sampleLCA | R Documentation |
The MCMC scheme is implemented as suggested in Frühwirth-Schnatter et al (2021).
The priors on the model parameters are specified as in Frühwirth-Schnatter et al (2021), see the vignette for details and notation.
sampleLCA(
y,
S,
pi,
eta,
a0,
M,
burnin,
thin,
Kmax,
G = c("MixDynamic", "MixStatic"),
priorOnK,
priorOnWeights,
verbose = FALSE
)
y |
A numeric matrix; containing the data. |
S |
A numeric matrix; containing the initial cluster assignments. |
pi |
A numeric vector; containing the initial cluster-specific success probabilities. |
eta |
A numeric vector; containing the initial cluster sizes. |
a0 |
A numeric vector; containing the parameters of the prior on the cluster-specific success probabilities. |
M |
A numeric scalar; specifying the number of recorded iterations. |
burnin |
A numeric scalar; specifying the number of burn-in iterations. |
thin |
A numeric scalar; specifying the thinning used for the iterations. |
Kmax |
A numeric scalar; the maximum number of components. |
G |
A character string; either |
priorOnK |
A named list; providing the prior on the number of components K, see |
priorOnWeights |
A named list; providing the prior on the mixture weights. |
verbose |
A logical; indicating if some intermediate clustering results should be printed. |
A named list containing:
"Pi"
: sampled component-specific success probabilities.
"Eta"
: sampled weights.
"S"
: sampled assignments.
"Nk"
: number of observations assigned to the different components, for each iteration.
"K"
: sampled number of components.
"Kplus"
: number of filled, i.e., non-empty components, for each iteration.
"e0"
: sampled Dirichlet parameter of the prior on the weights (if e_0
is random).
"alpha"
: sampled Dirichlet parameter of the prior on the weights (if \alpha
is random).
"acc"
: logical vector indicating acceptance in the Metropolis-Hastings step when sampling either e_0
or \alpha
.
if (requireNamespace("poLCA", quietly = TRUE)) {
data("carcinoma", package = "poLCA")
y <- carcinoma
N <- nrow(y)
r <- ncol(y)
M <- 200
thin <- 1
burnin <- 100
Kmax <- 50
Kinit <- 10
G <- "MixDynamic"
priorOnAlpha <- priorOnAlpha_spec("gam_1_2")
priorOnK <- priorOnK_spec("Pois_1")
cat <- apply(y, 2, max)
a0 <- rep(1, sum(cat))
cl_y <- kmeans(y, centers = Kinit, iter.max = 20)
S_0 <- cl_y$cluster
eta_0 <- cl_y$size/N
pi_0 <- do.call("cbind", lapply(1:r, function(j) {
prop.table(table(S_0, y[, j]), 1)
}))
result <- sampleLCA(
y, S_0, pi_0, eta_0, a0,
M, burnin, thin, Kmax,
G, priorOnK, priorOnAlpha)
K <- result$K
Kplus <- result$Kplus
plot(K, type = "l", ylim = c(0, max(K)),
xlab = "iteration", main = "",
ylab = expression("K" ~ "/" ~ K["+"]), col = 1)
lines(Kplus, col = 2)
legend("topright", legend = c("K", expression(K["+"])),
col = 1:2, lty = 1, box.lwd = 0)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.