View source: R/sampleUniNormMixture.R
sampleUniNormMixture | R Documentation |
The MCMC scheme is implemented as suggested in Frühwirth-Schnatter et al (2021).
The priors on the model parameters are specified as in Frühwirth-Schnatter et al (2021), see the vignette for details and notation.
The parametrizations of the gamma and inverse gamma distribution are used as in Frühwirth-Schnatter et al (2021), see also the vignette.
sampleUniNormMixture(
y,
S,
mu,
sigma2,
eta,
c0,
g0,
G0,
C0_0,
b0,
B0,
M,
burnin,
thin,
Kmax,
G = c("MixDynamic", "MixStatic"),
priorOnK,
priorOnWeights,
verbose = FALSE
)
y |
A numeric matrix; containing the data. |
S |
A numeric matrix; containing the initial cluster assignments. |
mu |
A numeric matrix; containing the initial cluster-specific mean values. |
sigma2 |
A numeric matrix; containing the initial cluster-specific variance values. |
eta |
A numeric vector; containing the initial cluster sizes. |
c0 |
A numeric vector; hyperparameter of the prior on |
g0 |
A numeric vector; hyperparameter of the prior on |
G0 |
A numeric vector; hyperparameter of the prior on |
C0_0 |
A numeric vector; initial value of hyperparameter |
b0 |
A numeric vector; hyperparameter of the prior on |
B0 |
A numeric vector; hyperparameter of the prior on |
M |
A numeric scalar; specifying the number of recorded iterations. |
burnin |
A numeric scalar; specifying the number of burn-in iterations. |
thin |
A numeric scalar; specifying the thinning used for the iterations. |
Kmax |
A numeric scalar; the maximum number of components. |
G |
A character string; either |
priorOnK |
A named list; providing the prior on the number of
components K, see |
priorOnWeights |
A named list; providing the prior on the mixture weights. |
verbose |
A logical; indicating if some intermediate clustering results should be printed. |
A named list containing:
"Mu"
: sampled component means.
"Sigma2"
: sampled component component variances.
"Eta"
: sampled weights.
"S"
: sampled assignments.
"Nk"
: number of observations assigned to the different components, for each iteration.
"K"
: sampled number of components.
"Kplus"
: number of filled, i.e., non-empty components, for each iteration.
"e0"
: sampled Dirichlet parameter of the prior on the weights (if e_0
is random).
"alpha"
: sampled Dirichlet parameter of the prior on the weights (if \alpha
is random).
"acc"
: logical vector indicating acceptance in the Metropolis-Hastings step when sampling either e_0
or \alpha
.
if (requireNamespace("mclust", quietly = TRUE)) {
data("acidity", package = "mclust")
y <- acidity
N <- length(y)
r <- 1
M <- 200
thin <- 1
burnin <- 100
Kmax <- 50
Kinit <- 10
G <- "MixStatic"
priorOnE0 <- priorOnE0_spec("e0const", 0.01)
priorOnK <- priorOnK_spec("Pois_1", 50)
R <- diff(range(y))
c0 <- 2 + (r-1)/2
C0 <- diag(c(0.02*(R^2)), nrow = r)
g0 <- 0.2 + (r-1) / 2
G0 <- diag(10/(R^2), nrow = r)
B0 <- diag((R^2), nrow = r)
b0 <- as.matrix((max(y) + min(y))/2, ncol = 1)
cl_y <- kmeans(y, centers = Kinit, nstart = 100)
S_0 <- cl_y$cluster
mu_0 <- t(cl_y$centers)
eta_0 <- rep(1/Kinit, Kinit)
sigma2_0 <- array(0, dim = c(1, 1, Kinit))
sigma2_0[1, 1, ] <- 0.5 * C0
result <- sampleUniNormMixture(
y, S_0, mu_0, sigma2_0, eta_0,
c0, g0, G0, C0, b0, B0,
M, burnin, thin, Kmax,
G, priorOnK, priorOnE0)
K <- result$K
Kplus <- result$Kplus
plot(K, type = "l", ylim = c(0, max(K)),
xlab = "iteration", main = "",
ylab = expression("K" ~ "/" ~ K["+"]), col = 1)
lines(Kplus, col = 2)
legend("topright", legend = c("K", expression(K["+"])),
col = 1:2, lty = 1, box.lwd = 0)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.