Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(testCompareR)
## -----------------------------------------------------------------------------
dat <- cass
## -----------------------------------------------------------------------------
results <- compareR(dat)
results
## -----------------------------------------------------------------------------
results$acc$accuracies # returns summary tables for diagnostic accuracies
## -----------------------------------------------------------------------------
interpretR(results)
## -----------------------------------------------------------------------------
# create data frame with varied coding
df <- data.frame(
test1 = c(" positive ", "POS ", " n ", "N ", " 1 ", "+"),
test2 = c(" NEG ", " yes ", " negative", " Y ", "-", " 0 "),
gold = c(0, 1, 0, 1, 2, 1)
)
# recode the dataframe
recoded <- testCompareR:::recoder(df)
recoded
## -----------------------------------------------------------------------------
# simulate data
test1 <- c(rep(1, 300), rep(0, 100), rep(1, 65), rep(0, 135))
test2 <- c(rep(1, 280), rep(0, 120), rep(1, 55), rep(0, 145))
gold <- c(rep(1, 400), rep(0, 200))
df <- data.frame(test1, test2, gold)
# test with alpha = 0.5
result <- compareR(df, alpha = 0.5)
# all results are significant
interpretR(result)
## -----------------------------------------------------------------------------
# simulate data
test1 <- c(rep(1, 300), rep(0, 100), rep(1, 65), rep(0, 135))
test2 <- c(rep(1, 280), rep(0, 120), rep(1, 55), rep(0, 145))
gold <- c(rep(1, 400), rep(0, 200))
df <- data.frame(test1, test2, gold)
# test with alpha = 0.5
result <- compareR(df, margins = TRUE)
# contingency tables have margins
result$cont
## -----------------------------------------------------------------------------
# display p.adjust.methods
p.adjust.methods
# simulate data
test1 <- c(rep(1, 300), rep(0, 100), rep(1, 65), rep(0, 135))
test2 <- c(rep(1, 280), rep(0, 120), rep(1, 55), rep(0, 145))
gold <- c(rep(1, 400), rep(0, 200))
df <- data.frame(test1, test2, gold)
# test with different multiple comparison methods
result1 <- compareR(df, multi_corr = "holm")
result2 <- compareR(df, multi_corr = "bonf")
# the more restrictive Bonferroni method returns higher adjusted p values
result1$pv$glob.p.adj < result2$pv$glob.p.adj
## -----------------------------------------------------------------------------
# simulate data
test1 <- c(rep(1, 6), rep(0, 2), rep(1, 14), rep(0, 76))
test2 <- c(rep(1, 1), rep(0, 7), rep(1, 2), rep(0, 88))
gold <- c(rep(1, 8), rep(0, 90))
df <- data.frame(test1, test2, gold)
# run compareR without continuity correction
result <- compareR(df, cc = FALSE)
result$acc
## -----------------------------------------------------------------------------
# simulate data
test1 <- c(rep(1, 317), rep(0, 83), rep(1, 68), rep(0, 132))
test2 <- c(rep(1, 281), rep(0, 119), rep(1, 51), rep(0, 149))
gold <- c(rep(1, 390), rep(0, 210))
df <- data.frame(test1, test2, gold)
# test with different multiple comparison methods
result <- compareR(df, dp = 3)
# the values in the summary tables are displayed to 3 decimal places
result$acc$accuracies
## -----------------------------------------------------------------------------
# simulate data
test1 <- c(rep(1, 317), rep(0, 83), rep(1, 68), rep(0, 132))
test2 <- c(rep(1, 281), rep(0, 119), rep(1, 51), rep(0, 149))
gold <- c(rep(1, 390), rep(0, 210))
df <- data.frame(test1, test2, gold)
# only display results for predictive values
result <- compareR(df, test1 = "test1", test2 = "test2", gold = "gold",
sesp = FALSE, plrnlr = FALSE)
result
## -----------------------------------------------------------------------------
# simulate data
test1 <- c(rep(1, 317), rep(0, 83), rep(1, 68), rep(0, 132))
test2 <- c(rep(1, 281), rep(0, 119), rep(1, 51), rep(0, 149))
gold <- c(rep(1, 390), rep(0, 210))
df <- data.frame(test1, test2, gold)
# only display results for predictive values
result <- compareR(df, test.names = c("POCT", "Lab Blood"))
result$acc$accuracies
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.