dgpd: Density, cumulative density, quantiles and random number...

View source: R/dgpd.R

dgpdR Documentation

Density, cumulative density, quantiles and random number generation for the generalized Pareto distribution

Description

Density, cumulative density, quantiles and random number generation for the generalized Pareto distribution

Usage

dgpd(x, sigma, xi, u = 0, log.d = FALSE)

pgpd(q, sigma, xi, u = 0, lower.tail = TRUE, log.p = FALSE)

qgpd(p, sigma, xi, u = 0, lower.tail = TRUE, log.p = FALSE)

rgpd(n, sigma, xi, u = 0)

Arguments

x, q, p

Value, quantile or probability respectively.

sigma

Scale parameter.

xi

Shape parameter.

u

Threshold

log.d, log.p

Whether or not to work on the log scale.

lower.tail

Whether to return the lower tail.

n

Number of random numbers to simulate.

Details

Random number generation is done by transformation of a standard exponential.

Author(s)

Janet E Heffernan, Paul Metcalfe, Harry Southworth

Examples


  x <- rgpd(1000, sigma=1, xi=.5)
  hist(x)
  x <- rgpd(1000, sigma=exp(rnorm(1000, 1, .25)), xi=rnorm(1000, .5, .2))
  hist(x)
  plot(pgpd(x, sigma=1, xi=.5))


texmex documentation built on June 22, 2024, 12:26 p.m.