View source: R/4_1_textPlotCentrality.R
textCentralityPlot | R Documentation |
Plot words according to semantic similarity to the aggregated word embedding.
textCentralityPlot(
word_data,
min_freq_words_test = 1,
plot_n_word_extreme = 10,
plot_n_word_frequency = 10,
plot_n_words_middle = 10,
titles_color = "#61605e",
x_axes = "central_semantic_similarity",
title_top = "Semantic Centrality Plot",
x_axes_label = "Semantic Centrality",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
centrality_color_codes = c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.5,
points_without_words_alpha = 0.5,
legend_title = "SC",
legend_x_axes_label = "x",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1007
)
word_data |
Tibble from the textPlot function. |
min_freq_words_test |
Select words to significance test that have occurred at least min_freq_words_test (default = 1). |
plot_n_word_extreme |
Number of words per dimension to plot with extreme Supervised Dimension Projection value (default = 10). (i.e., even if not significant; duplicates are removed). |
plot_n_word_frequency |
Number of words to plot according to their frequency (default = 10). (i.e., even if not significant). |
plot_n_words_middle |
Number of words to plot that are in the middle in Supervised Dimension Projection score (default = 10). (i.e., even if not significant; duplicates are removed). |
titles_color |
Color for all the titles (default: "#61605e"). |
x_axes |
Variable to be plotted on the x-axes (default: "central_semantic_similarity", could also select "n", "n_percent"). |
title_top |
Title (default: " "). |
x_axes_label |
Label on the x-axes (default: "Semantic Centrality"). |
scale_x_axes_lim |
Length of the x-axes (default: NULL, which uses c(min(word_data$central_semantic_similarity)-0.05, max(word_data$central_semantic_similarity)+0.05); change this by e.g., try c(-5, 5)). |
scale_y_axes_lim |
Length of the y-axes (default: NULL, which uses c(-1, 1); change e.g., by trying c(-5, 5)). |
word_font |
Type of font (default: NULL). |
centrality_color_codes |
(HTML color codes. type = character) Colors of the words selected as plot_n_word_extreme (minimum values), plot_n_words_middle, plot_n_word_extreme (maximum values) and plot_n_word_frequency; the default is c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d", respectively. |
word_size_range |
Vector with minimum and maximum font size (default: c(3, 8)). |
position_jitter_hight |
Jitter height (default: .0). |
position_jitter_width |
Jitter width (default: .03). |
point_size |
Size of the points indicating the words' position (default: 0.5). |
arrow_transparency |
Transparency of the lines between each word and point (default: 0.1). |
points_without_words_size |
Size of the points not linked to a word (default is to not show the point; , i.e., 0). |
points_without_words_alpha |
Transparency of the points that are not linked to a word (default is to not show it; i.e., 0). |
legend_title |
Title of the color legend (default: "SCP"). |
legend_x_axes_label |
Label on the color legend (default: "x"). |
legend_x_position |
Position on the x coordinates of the color legend (default = 0.02). |
legend_y_position |
Position on the y coordinates of the color legend (default = 0.05). |
legend_h_size |
Height of the color legend (default = 0.15). |
legend_w_size |
Width of the color legend (default = 0.15). |
legend_title_size |
Font size of the title (default = 7). |
legend_number_size |
Font size of the values in the legend (default = 2). |
seed |
Set different seed (default = 1007). |
A 1-dimensional word plot based on similarity to the aggregated word embedding, as well as tibble with processed data used to plot.
See textCentrality
and textProjection
.
# Plot a centrality plot from the dataframe df_for_plotting
# that is returned by the textCentrality function.
## Not run:
textCentralityPlot(
df_for_plotting,
min_freq_words_test = 1,
plot_n_word_extreme = 10,
plot_n_word_frequency = 10,
plot_n_words_middle = 10,
titles_color = "#61605e",
x_axes = "central_semantic_similarity",
title_top = "Semantic Centrality Plot",
x_axes_label = "Semantic Centrality",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
centrality_color_codes = c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.5,
points_without_words_alpha = 0.5,
legend_title = "SC",
legend_x_axes_label = "x",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1007
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.