textPCAPlot | R Documentation |
Plot words according to 2-D plot from 2 PCA components.
textPCAPlot(
word_data,
min_freq_words_test = 1,
plot_n_word_extreme = 5,
plot_n_word_frequency = 5,
plot_n_words_middle = 5,
titles_color = "#61605e",
title_top = "Principal Component (PC) Plot",
x_axes_label = "PC1",
y_axes_label = "PC2",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
bivariate_color_codes = c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA",
"#40DD52", "#FF0000", "#EA7467", "#85DB8E"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.2,
points_without_words_alpha = 0.2,
legend_title = "PC",
legend_x_axes_label = "PC1",
legend_y_axes_label = "PC2",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1002
)
word_data |
Dataframe from textPCA |
min_freq_words_test |
Select words to significance test that have occurred at least min_freq_words_test (default = 1). |
plot_n_word_extreme |
Number of words that are extreme on Supervised Dimension Projection per dimension. (i.e., even if not significant; per dimensions, where duplicates are removed). |
plot_n_word_frequency |
Number of words based on being most frequent. (i.e., even if not significant). |
plot_n_words_middle |
Number of words plotted that are in the middle in Supervised Dimension Projection score (i.e., even if not significant; per dimensions, where duplicates are removed). |
titles_color |
Color for all the titles (default: "#61605e") |
title_top |
Title (default " ") |
x_axes_label |
Label on the x-axes. |
y_axes_label |
Label on the y-axes. |
scale_x_axes_lim |
Manually set the length of the x-axes (default = NULL, which uses ggplot2::scale_x_continuous(limits = scale_x_axes_lim); change e.g., by trying c(-5, 5)). |
scale_y_axes_lim |
Manually set the length of the y-axes (default = NULL; which uses ggplot2::scale_y_continuous(limits = scale_y_axes_lim); change e.g., by trying c(-5, 5)). |
word_font |
Font type (default: NULL). |
bivariate_color_codes |
The different colors of the words (default: c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA", "#40DD52", "#FF0000", "#EA7467", "#85DB8E")). |
word_size_range |
Vector with minimum and maximum font size (default: c(3, 8)). |
position_jitter_hight |
Jitter height (default: .0). |
position_jitter_width |
Jitter width (default: .03). |
point_size |
Size of the points indicating the words' position (default: 0.5). |
arrow_transparency |
Transparency of the lines between each word and point (default: 0.1). |
points_without_words_size |
Size of the points not linked with a words (default is to not show it, i.e., 0). |
points_without_words_alpha |
Transparency of the points not linked with a words (default is to not show it, i.e., 0). |
legend_title |
Title on the color legend (default: "(PCA)". |
legend_x_axes_label |
Label on the color legend (default: "(x)". |
legend_y_axes_label |
Label on the color legend (default: "(y)". |
legend_x_position |
Position on the x coordinates of the color legend (default: 0.02). |
legend_y_position |
Position on the y coordinates of the color legend (default: 0.05). |
legend_h_size |
Height of the color legend (default 0.15). |
legend_w_size |
Width of the color legend (default 0.15). |
legend_title_size |
Font size (default: 7). |
legend_number_size |
Font size of the values in the legend (default: 2). |
seed |
Set different seed. |
A 1- or 2-dimensional word plot, as well as tibble with processed data used to plot..
see textPCA
# The test-data included in the package is called: DP_projections_HILS_SWLS_100
# Supervised Dimension Projection Plot
principle_component_plot_projection <- textPCAPlot(PC_projections_satisfactionwords_40)
principle_component_plot_projection
names(DP_projections_HILS_SWLS_100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.