Nothing
reticulate::use_virtualenv("tf-1.12.0")
# Packages ----------------------------------------------------------------
library(tensorflow)
sess <- tf$Session()
mnist <- readRDS("data/mnist.rds")
next_batch <- function() {
ids <- sample.int(nrow(mnist$train$x), size = 32)
list(
x = mnist$train$x[ids,],
y = mnist$train$y[ids,]
)
}
x <- tf$placeholder(tf$float32, shape(NULL, 784L))
W <- tf$Variable(tf$zeros(shape(784L, 10L)))
b <- tf$Variable(tf$zeros(shape(10L)))
y <- tf$nn$softmax(tf$matmul(x, W) + b)
y_ <- tf$placeholder(tf$float32, shape(NULL, 10L))
cross_entropy <- tf$reduce_mean(-tf$reduce_sum(y_ * tf$log(y), reduction_indices=1L))
optimizer <- tf$train$GradientDescentOptimizer(0.05)
train_step <- optimizer$minimize(cross_entropy)
init <- tf$global_variables_initializer()
sess$run(init)
for (i in 1:1000) {
batches <- next_batch()
batch_xs <- batches[[1]]
batch_ys <- batches[[2]]
sess$run(train_step,
feed_dict = dict(x = batch_xs, y_ = batch_ys))
}
correct_prediction <- tf$equal(tf$argmax(y, 1L), tf$argmax(y_, 1L))
accuracy <- tf$reduce_mean(tf$cast(correct_prediction, tf$float32))
sess$run(accuracy, feed_dict=dict(x = mnist$train$x, y_ = mnist$train$y))
export_savedmodel(
sess,
"models/tensorflow-1.12.0/",
inputs = list(images = x),
outputs = list(scores = y))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.