glm_families: GLM families

glm_familiesR Documentation

GLM families

Description

A list of models that can be used as the model argument in glm_fit():

Details

  • Bernoulli: Bernoulli(probs=mean) where mean = sigmoid(matmul(X, weights))

  • BernoulliNormalCDF: Bernoulli(probs=mean) where mean = Normal(0, 1).cdf(matmul(X, weights))

  • GammaExp: Gamma(concentration=1, rate=1 / mean) where mean = exp(matmul(X, weights))

  • GammaSoftplus: Gamma(concentration=1, rate=1 / mean) where mean = softplus(matmul(X, weights))

  • LogNormal: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2))) where mean = exp(matmul(X, weights)).

  • LogNormalSoftplus: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2))) where mean = softplus(matmul(X, weights))

  • Normal: Normal(loc=mean, scale=1) where mean = matmul(X, weights).

  • NormalReciprocal: Normal(loc=mean, scale=1) where mean = 1 / matmul(X, weights)

  • Poisson: Poisson(rate=mean) where mean = exp(matmul(X, weights)).

  • PoissonSoftplus: Poisson(rate=mean) where mean = softplus(matmul(X, weights)).

Value

list of models that can be used as the model argument in glm_fit()

See Also

Other glm_fit: glm_fit.tensorflow.tensor(), glm_fit_one_step.tensorflow.tensor()


tfprobability documentation built on Sept. 1, 2022, 5:07 p.m.