| mcmc_uncalibrated_hamiltonian_monte_carlo | R Documentation |
Warning: this kernel will not result in a chain which converges to the
target_log_prob. To get a convergent MCMC, use mcmc_hamiltonian_monte_carlo(...)
or mcmc_metropolis_hastings(mcmc_uncalibrated_hamiltonian_monte_carlo(...)).
For more details on UncalibratedHamiltonianMonteCarlo, see HamiltonianMonteCarlo.
mcmc_uncalibrated_hamiltonian_monte_carlo( target_log_prob_fn, step_size, num_leapfrog_steps, state_gradients_are_stopped = FALSE, seed = NULL, store_parameters_in_results = FALSE, name = NULL )
target_log_prob_fn |
Function which takes an argument like
|
step_size |
|
num_leapfrog_steps |
Integer number of steps to run the leapfrog integrator
for. Total progress per HMC step is roughly proportional to
|
state_gradients_are_stopped |
|
seed |
integer to seed the random number generator. |
store_parameters_in_results |
If |
name |
string prefixed to Ops created by this function.
Default value: |
a Monte Carlo sampling kernel
Other mcmc_kernels:
mcmc_dual_averaging_step_size_adaptation(),
mcmc_hamiltonian_monte_carlo(),
mcmc_metropolis_adjusted_langevin_algorithm(),
mcmc_metropolis_hastings(),
mcmc_no_u_turn_sampler(),
mcmc_random_walk_metropolis(),
mcmc_replica_exchange_mc(),
mcmc_simple_step_size_adaptation(),
mcmc_slice_sampler(),
mcmc_transformed_transition_kernel(),
mcmc_uncalibrated_langevin(),
mcmc_uncalibrated_random_walk()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.