split-methods: Split the heatmap row-wise depending on the biggest branches...

split_rowsR Documentation

Split the heatmap row-wise depending on the biggest branches in the cladogram.

Description

split_rows() from a 'InputHeatmap' object, split the row cladogram.

split_columns() from a 'InputHeatmap' object, split the column cladogram.

Usage

split_rows(.data, number_of_groups)

## S4 method for signature 'InputHeatmap'
split_rows(.data, number_of_groups)

split_columns(.data, number_of_groups)

## S4 method for signature 'InputHeatmap'
split_columns(.data, number_of_groups)

Arguments

.data

A 'InputHeatmap'

number_of_groups

An integer. The number of groups to split the cladogram into.

Details

\lifecycle

maturing

It uses 'ComplexHeatmap' as visualisation tool.

\lifecycle

maturing

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples


library(dplyr)

hm = 
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)

hm %>% split_rows(2)


library(dplyr)

hm = 
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)

hm %>% split_columns(2)


tidyHeatmap documentation built on May 20, 2022, 9:05 a.m.