knitr::opts_chunk$set( collapse = TRUE, #eval = FALSE, comment = "#>" )
I love the tidy syntax of dplyr and the ultimate speed of data.table. Why not take the both? That is why I have started the work of tidyfst, bridging the tidy syntax and computation performance via translation. This tool is especially friendly for dplyr users who want to learn some data.table, but data.table could also benefit from it (more or less).
A great comparison of data.table and dplyr was displayed at https://atrebas.github.io/post/2019-03-03-datatable-dplyr/ (thanks to Atrebas). I love this tutorial very much because it dig rather deep into many features from both packages. Here I'll try to implement all operations from that tutorial, and the potential users could find why they would prefer tidyfst for some (if not most) tasks.
The below examples have all been checked with tidyfst. Now let's begin.
library(tidyfst) set.seed(1L) ## Create a data table DF <- data.table(V1 = rep(c(1L, 2L), 5)[-10], V2 = 1:9, V3 = c(0.5, 1.0, 1.5), V4 = rep(LETTERS[1:3], 3)) copy(DF) -> DT class(DF) DF
### Filter rows using indices slice_dt(DF, 3:4) ### Discard rows using negative indices slice_dt(DF, -(3:7)) ### Filter rows using a logical expression filter_dt(DF, V2 > 5) filter_dt(DF, V4 %in% c("A", "C")) filter_dt(DF, V4 %chin% c("A", "C")) # fast %in% for character ### Filter rows using multiple conditions filter_dt(DF, V1 == 1, V4 == "A") # equals to filter_dt(DF, V1 == 1 & V4 == "A") ### Filter unique rows distinct_dt(DF) # unique(DF) distinct_dt(DF, V1,V4) ### Discard rows with missing values drop_na_dt(DF) # na.omit(DF) ### Other filters sample_n_dt(DF, 3) # n random rows sample_frac_dt(DF, 0.5) # fraction of random rows slice_max_dt(DF, V1,1) # top n entries (includes equals) filter_dt(DT,V4 %like% "^B") filter_dt(DT,V2 %between% c(3, 5)) filter_dt(DT,between(V2, 3, 5, incbounds = FALSE)) filter_dt(DT,V2 %inrange% list(-1:1, 1:3)) # see also ?inrange
### Sort rows by column arrange_dt(DF, V3) ### Sort rows in decreasing order arrange_dt(DF, -V3) ### Sort rows based on several columns arrange_dt(DF, V1, -V2)
### Select one column using an index (not recommended) pull_dt(DT,3) # returns a vector select_dt(DT,3) # returns a data.table ### Select one column using column name select_dt(DF, V2) # returns a data.table pull_dt(DF, V2) # returns a vector ### Select several columns select_dt(DF, V2, V3, V4) select_dt(DF, V2:V4) # select columns between V2 and V4 ### Exclude columns select_dt(DF, -V2, -V3) ### Select/Exclude columns using a character vector cols <- c("V2", "V3") select_dt(DF,cols = cols) select_dt(DF,cols = cols,negate = TRUE) ### Other selections select_dt(DF, cols = paste0("V", 1:2)) relocate_dt(DF, V4) # reorder columns select_dt(DF, "V") select_dt(DF, "3$") select_dt(DF, ".2") select_dt(DF, "V1") select_dt(DF, -"^V2") # remove variables using "-" prior to function
### Summarise one column summarise_dt(DF, sum(V1)) # returns a data.table summarise_dt(DF, sumV1 = sum(V1)) # returns a data.table ### Summarise several columns summarise_dt(DF, sum(V1), sd(V3)) ### Summarise several columns and assign column names DF %>% summarise_dt(sumv1 = sum(V1), sdv3 = sd(V3)) ### Summarise a subset of rows DT[1:4, sum(V1)] DF %>% slice_dt(1:4) %>% summarise_dt(sum(V1)) ### Misc summarise_dt(DF, nth(V3,1)) summarise_dt(DF, nth(V3,-1)) summarise_dt(DF, nth(V3, 5)) summarise_dt(DF, uniqueN(V4)) uniqueN(DF)
### By group # not recommended DF %>% group_dt( by = V4, summarise_dt(sumV2 = sum(V2)) ) # recommended DF %>% summarise_dt(sumV2 = sum(V2),by = V4) ### By several groups DF %>% summarise_dt(sumV2 = sum(V2),by = .(V1,V4)) ### Calling function in by DF %>% summarise_dt(sumV2 = sum(V2),by = tolower(V4)) ### Assigning column name in by DF %>% summarise_dt(sumV2 = sum(V2),by = .(abc = tolower(V4))) ### Using a condition in by DF %>% summarise_dt(sumV2 = sum(V2),by = V4 == "A") ### By on a subset of rows DF %>% slice_dt(1:5) %>% summarise_dt(sumV1 = sum(V1),by = V4) ### Count number of observations for each group count_dt(DF, V4) ### Add a column with number of observations for each group add_count_dt(DF, V1) ### Retrieve the first/last/nth observation for each group DF %>% summarise_dt(by = V4,nth(V2,1)) DF %>% summarise_dt(by = V4,nth(V2,-1)) DF %>% summarise_dt(by = V4,nth(V2,2))
### Summarise all the columns summarise_vars(DT,.func = max) ### Summarise several columns summarise_vars(DT,c("V1", "V2"),mean) ### Summarise several columns by group DT %>% summarise_vars(c("V1", "V2"),mean,by = V4) ## using patterns (regex) DT %>% summarise_vars("V1|V2",mean,by = V4) ## Summarise with more than one function by group # when you can't find a way, you can always use `in_dt` to use data.table DT %>% in_dt(, by = V4, c(lapply(.SD, sum), lapply(.SD, mean))) ### Summarise using a condition summarise_vars(DF, is.numeric, mean) ### Modify all the columns mutate_vars(DF, .func = rev) ### Modify several columns (dropping the others) DF %>% select_dt(cols = c("V1", "V2")) %>% mutate_vars(.func = sqrt) DF %>% select_dt(-V4) %>% mutate_vars(.func = exp) ### Modify several columns (keeping the others) DF %>% mutate_vars(c("V1", "V2"), sqrt) DF %>% mutate_vars(-"V4", exp) ### Modify columns using a condition (dropping the others) select_dt(DT,is.numeric) ### Modify columns using a condition (keeping the others) mutate_vars(DT,is.numeric,as.integer) ### Use a complex expression DF %>% group_dt( by = V4, slice_dt(1:2) %>% transmute_dt(V1 = V1, V2 = "X") ) ### Use multiple expressions (with DT[,{j}]) DT %>% in_dt(,{ print(V1) # comments here! print(summary(V1)) x <- V1 + sum(V2) .(A = 1:.N, B = x) # last list returned as a data.table } )
### Select first/last/… row by group DT %>% group_dt( by = V4, head(1) ) DT %>% group_dt( by = V4, tail(2) ) DT %>% group_dt( by = V4, slice_dt(1,.N) ) ### Select rows using a nested query DF %>% group_dt( by = V4, arrange_dt(V2) %>% slice_dt(1) ) ### Add a group counter column DT %>% mutate_dt(Grp = .GRP,by = .(V4, V1)) ### Get row number of first (and last) observation by group DT %>% summarise_dt(I = .I,by = V4) DT %>% summarise_dt(I = .I[1],by = V4) DT %>% summarise_dt(I = .I[c(1,.N)],by = V4) ### Handle list-columns by group DT %>% select_dt(V1,V4) %>% chop_dt(V1) # return V1 as a list DT %>% nest_dt(V4) # subsets of the data ### Grouping sets (multiple by at once) # use data.table directly, tidyfst does not provide new methods for it yet data.table::rollup(DT, .(SumV2 = sum(V2)), by = c("V1", "V4")) data.table::rollup(DT, .(SumV2 = sum(V2), .N), by = c("V1", "V4"), id = TRUE) data.table::cube(DT, .(SumV2 = sum(V2), .N), by = c("V1", "V4"), id = TRUE) data.table::groupingsets(DT, .(SumV2 = sum(V2), .N), by = c("V1", "V4"), sets = list("V1", c("V1", "V4")), id = TRUE)
tidyfst exports data.table::fread
and data.table::fwrite
directly.
### Write data to a csv file fwrite(DT, "DT.csv") ### Write data to a tab-delimited file fwrite(DT, "DT.txt", sep = "\t") ### Write list-column data to a csv file fwrite(setDT(list(0, list(1:5))), "DT2.csv") # ### Read a csv / tab-delimited file fread("DT.csv") # fread("DT.csv", verbose = TRUE) # full details fread("DT.txt", sep = "\t") ### Read a csv file selecting / droping columns fread("DT.csv", select = c("V1", "V4")) fread("DT.csv", drop = "V4") # NA ### Read and rbind several files rbindlist(lapply(c("DT.csv", "DT.csv"), fread)) # c("DT.csv", "DT.csv") %>% lapply(fread) %>% rbindlist
### Melt data (from wide to long) fsetequal(DT,DF) mDT = DT %>% longer_dt(V3,V4) mDF = DF %>% longer_dt(-"V1|V2") fsetequal(mDT,mDF) mDT ### Cast data (from long to wide) mDT %>% wider_dt(V4,name = "name",value = "value") # below is a special case and could only be done in tidyfst mDT %>% wider_dt(V4,name = "name",value = "value",fun = list) mDT %>% wider_dt(V4,name = "name",value = "value",fun = sum) ### Split split(DT, by = "V4")
### Lead/Lag lag_dt(1:10,n = 1) lag_dt(1:10,n = 1:2) lead_dt(1:10,n = 1)
x <- data.table(Id = c("A", "B", "C", "C"), X1 = c(1L, 3L, 5L, 7L), XY = c("x2", "x4", "x6", "x8"), key = "Id") y <- data.table(Id = c("A", "B", "B", "D"), Y1 = c(1L, 3L, 5L, 7L), XY = c("y1", "y3", "y5", "y7"), key = "Id") ### left join left_join_dt(x, y, by = "Id") ### right join right_join_dt(x, y, by = "Id") ### inner join inner_join_dt(x, y, by = "Id") ### full join full_join_dt(x, y, by = "Id") ### semi join semi_join_dt(x, y, by = "Id") ### anti join anti_join_dt(x, y, by = "Id")
x <- data.table(1:3) y <- data.table(4:6) z <- data.table(7:9, 0L) ### Bind rows rbind(x, y) rbind(x, z, fill = TRUE) ### Bind rows using a list rbindlist(list(x, y), idcol = TRUE) ### Bind columns cbind(x, y)
x <- data.table(c(1, 2, 2, 3, 3)) y <- data.table(c(2, 2, 3, 4, 4)) ### Intersection fintersect(x, y) fintersect(x, y, all = TRUE) ### Difference fsetdiff(x, y) fsetdiff(x, y, all = TRUE) ### Union funion(x, y) funion(x, y, all = TRUE) ### Equality fsetequal(x, x[order(-V1),]) all.equal(x, x) # S3 method setequal(x, x[order(-V1),])
To break all these codes through, tidyfst has improved bit by bit. If you are using tidyfst frequently, you'll find that while it enjoys a tidy syntax, it is more like you are using data.table in another style. Compared with many other packages with similar goals, tidyfst sticks to many principles of data.table (and is more like data.table in many ways). However, the ultimate goal is still clear: providing users with state-of-the-art data manipulation tools with least pain. Therefore, keep it simple and make it fast. Enjoy tidyfst~
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.