Man pages for tidylearn
A Unified Tidy Interface to R's Machine Learning Ecosystem

augment_dbscanAugment Data with DBSCAN Cluster Assignments
augment_hclustAugment Data with Hierarchical Cluster Assignments
augment_kmeansAugment Data with K-Means Cluster Assignments
augment_pamAugment Data with PAM Cluster Assignments
augment_pcaAugment Original Data with PCA Scores
calc_validation_metricsCalculate Cluster Validation Metrics
calc_wssCalculate Within-Cluster Sum of Squares for Different k
compare_clusteringsCompare Multiple Clustering Results
compare_distancesCompare Distance Methods
create_cluster_dashboardCreate Summary Dashboard
explore_dbscan_paramsExplore DBSCAN Parameters
filter_rules_by_itemFilter Rules by Item
find_related_itemsFind Related Items
get_pca_loadingsGet PCA Loadings in Wide Format
get_pca_varianceGet Variance Explained Summary
inspect_rulesInspect Association Rules
optimal_clustersFind Optimal Number of Clusters
optimal_hclust_kDetermine Optimal Number of Clusters for Hierarchical...
pipePipe operator
plot_cluster_comparisonCreate Cluster Comparison Plot
plot_clustersPlot Clusters in 2D Space
plot_cluster_sizesPlot Cluster Size Distribution
plot_dendrogramPlot Dendrogram with Cluster Highlights
plot_distance_heatmapCreate Distance Heatmap
plot_elbowCreate Elbow Plot for K-Means
plot_gap_statPlot Gap Statistic
plot_knn_distPlot k-NN Distance Plot
plot_mdsPlot MDS Configuration
plot_silhouettePlot Silhouette Analysis
plot.tidylearn_edaPlot EDA results
plot.tidylearn_modelPlot method for tidylearn models
plot_variance_explainedPlot Variance Explained (PCA)
predict.tidylearn_modelPredict using a tidylearn model
predict.tidylearn_stratifiedPredict from stratified models
predict.tidylearn_transferPredict with transfer learning model
print.tidy_aprioriPrint Method for tidy_apriori
print.tidy_dbscanPrint Method for tidy_dbscan
print.tidy_gapPrint Method for tidy_gap
print.tidy_hclustPrint Method for tidy_hclust
print.tidy_kmeansPrint Method for tidy_kmeans
print.tidylearn_automlPrint auto ML results
print.tidylearn_edaPrint EDA results
print.tidylearn_modelPrint method for tidylearn models
print.tidylearn_pipelinePrint a tidylearn pipeline
print.tidy_mdsPrint Method for tidy_mds
print.tidy_pamPrint Method for tidy_pam
print.tidy_pcaPrint Method for tidy_pca
print.tidy_silhouettePrint Method for tidy_silhouette
recommend_productsGenerate Product Recommendations
standardize_dataStandardize Data
suggest_epsSuggest eps Parameter for DBSCAN
summarize_rulesSummarize Association Rules
summary.tidylearn_modelSummary method for tidylearn models
summary.tidylearn_pipelineSummarize a tidylearn pipeline
tidy_aprioriTidy Apriori Algorithm
tidy_claraTidy CLARA (Clustering Large Applications)
tidy_cutreeCut Hierarchical Clustering Tree
tidy_dbscanTidy DBSCAN Clustering
tidy_dendrogramPlot Dendrogram
tidy_distTidy Distance Matrix Computation
tidy_gap_statTidy Gap Statistic
tidy_gowerGower Distance Calculation
tidy_hclustTidy Hierarchical Clustering
tidy_kmeansTidy K-Means Clustering
tidy_knn_distCompute k-NN Distances
tidylearn-classificationClassification Functions for tidylearn
tidylearn-coretidylearn: A Unified Tidy Interface to R's Machine Learning...
tidylearn-deep-learningDeep Learning for tidylearn
tidylearn-diagnosticsAdvanced Diagnostics Functions for tidylearn
tidylearn-interactionsInteraction Analysis Functions for tidylearn
tidylearn-metricsMetrics Functionality for tidylearn
tidylearn-model-selectionModel Selection Functions for tidylearn
tidylearn-neural-networksNeural Networks for tidylearn
tidylearn-pipelineModel Pipeline Functions for tidylearn
tidylearn-regressionRegression Functions for tidylearn
tidylearn-regularizationRegularization Functions for tidylearn
tidylearn-svmSupport Vector Machines for tidylearn
tidylearn-treesTree-based Methods for tidylearn
tidylearn-tuningHyperparameter Tuning Functions for tidylearn
tidylearn-visualizationVisualization Functions for tidylearn
tidylearn-xgboostXGBoost Functions for tidylearn
tidy_mdsTidy Multidimensional Scaling
tidy_mds_classicalClassical (Metric) MDS
tidy_mds_kruskalKruskal's Non-metric MDS
tidy_mds_sammonSammon Mapping
tidy_mds_smacofSMACOF MDS (Metric or Non-metric)
tidy_pamTidy PAM (Partitioning Around Medoids)
tidy_pcaTidy Principal Component Analysis
tidy_pca_biplotCreate PCA Biplot
tidy_pca_screeplotCreate PCA Scree Plot
tidy_rulesConvert Association Rules to Tidy Tibble
tidy_silhouetteTidy Silhouette Analysis
tidy_silhouette_analysisSilhouette Analysis Across Multiple k Values
tl_add_cluster_featuresCluster-Based Features
tl_anomaly_awareAnomaly-Aware Supervised Learning
tl_auto_interactionsFind important interactions automatically
tl_auto_mlHigh-Level Workflows for Common Machine Learning Patterns
tl_calc_classification_metricsCalculate classification metrics
tl_calculate_pr_aucCalculate the area under the precision-recall curve
tl_check_assumptionsCheck model assumptions
tl_compare_cvCompare models using cross-validation
tl_compare_pipeline_modelsCompare models from a pipeline
tl_cvCross-validation for tidylearn models
tl_dashboardCreate interactive visualization dashboard for a model
tl_default_param_gridCreate pre-defined parameter grids for common models
tl_detect_outliersDetect outliers in the data
tl_diagnostic_dashboardCreate a comprehensive diagnostic dashboard
tl_evaluateEvaluate a tidylearn model
tl_evaluate_thresholdsEvaluate metrics at different thresholds
tl_exploreExploratory Data Analysis Workflow
tl_extract_importanceExtract importance from a tree-based model
tl_extract_importance_regularizedExtract importance from a regularized regression model
tl_fit_boostFit a gradient boosting model
tl_fit_deepFit a deep learning model
tl_fit_elastic_netFit an Elastic Net regression model
tl_fit_forestFit a random forest model
tl_fit_lassoFit a Lasso regression model
tl_fit_linearFit a linear regression model
tl_fit_logisticFit a logistic regression model
tl_fit_nnFit a neural network model
tl_fit_polynomialFit a polynomial regression model
tl_fit_regularizedFit a regularized regression model (Ridge, Lasso, or Elastic...
tl_fit_ridgeFit a Ridge regression model
tl_fit_svmFit a support vector machine model
tl_fit_treeFit a decision tree model
tl_fit_xgboostFit an XGBoost model
tl_get_best_modelGet the best model from a pipeline
tl_influence_measuresCalculate influence measures for a linear model
tl_interaction_effectsCalculate partial effects based on a model with interactions
tl_load_pipelineLoad a pipeline from disk
tl_modelCreate a tidylearn model
tl_pipelineCreate a modeling pipeline
tl_plot_actual_predictedPlot actual vs predicted values for a regression model
tl_plot_calibrationPlot calibration curve for a classification model
tl_plot_confusionPlot confusion matrix for a classification model
tl_plot_cv_comparisonPlot comparison of cross-validation results
tl_plot_cv_resultsPlot cross-validation results
tl_plot_deep_architecturePlot deep learning model architecture
tl_plot_deep_historyPlot deep learning model training history
tl_plot_diagnosticsPlot diagnostics for a regression model
tl_plot_gainPlot gain chart for a classification model
tl_plot_importancePlot variable importance for tree-based models
tl_plot_importance_comparisonPlot feature importance across multiple models
tl_plot_importance_regularizedPlot variable importance for a regularized regression model
tl_plot_influencePlot influence diagnostics
tl_plot_interactionPlot interaction effects
tl_plot_intervalsCreate confidence and prediction interval plots
tl_plot_liftPlot lift chart for a classification model
tl_plot_model_comparisonPlot model comparison
tl_plot_nn_architecturePlot neural network architecture
tl_plot_nn_tuningPlot neural network training history
tl_plot_partial_dependencePlot partial dependence for tree-based models
tl_plot_precision_recallPlot precision-recall curve for a classification model
tl_plot_regularization_cvPlot cross-validation results for a regularized regression...
tl_plot_regularization_pathPlot regularization path for a regularized regression model
tl_plot_residualsPlot residuals for a regression model
tl_plot_rocPlot ROC curve for a classification model
tl_plot_svm_boundaryPlot SVM decision boundary
tl_plot_svm_tuningPlot SVM tuning results
tl_plot_treePlot a decision tree
tl_plot_tuning_resultsPlot hyperparameter tuning results
tl_plot_xgboost_importancePlot feature importance for an XGBoost model
tl_plot_xgboost_shap_dependencePlot SHAP dependence for a specific feature
tl_plot_xgboost_shap_summaryPlot SHAP summary for XGBoost model
tl_plot_xgboost_treePlot XGBoost tree visualization
tl_predict_boostPredict using a gradient boosting model
tl_predict_deepPredict using a deep learning model
tl_predict_elastic_netPredict using an Elastic Net regression model
tl_predict_forestPredict using a random forest model
tl_predict_lassoPredict using a Lasso regression model
tl_predict_linearPredict using a linear regression model
tl_predict_logisticPredict using a logistic regression model
tl_predict_nnPredict using a neural network model
tl_predict_pipelineMake predictions using a pipeline
tl_predict_polynomialPredict using a polynomial regression model
tl_predict_regularizedPredict using a regularized regression model
tl_predict_ridgePredict using a Ridge regression model
tl_predict_svmPredict using a support vector machine model
tl_predict_treePredict using a decision tree model
tl_predict_xgboostPredict using an XGBoost model
tl_prepare_dataData Preprocessing for tidylearn
tl_reduce_dimensionsIntegration Functions: Combining Supervised and Unsupervised...
tl_run_pipelineRun a tidylearn pipeline
tl_save_pipelineSave a pipeline to disk
tl_semisupervisedSemi-Supervised Learning via Clustering
tl_splitSplit data into train and test sets
tl_step_selectionPerform stepwise selection on a linear model
tl_stratified_modelsStratified Features via Clustering
tl_test_interactionsTest for significant interactions between variables
tl_test_model_differencePerform statistical comparison of models using...
tl_transfer_learningTransfer Learning Workflow
tl_tune_deepTune a deep learning model
tl_tune_gridTune hyperparameters for a model using grid search
tl_tune_nnTune a neural network model
tl_tune_randomTune hyperparameters for a model using random search
tl_tune_xgboostTune XGBoost hyperparameters
tl_versionGet tidylearn version information
tl_xgboost_shapGenerate SHAP values for XGBoost model interpretation
visualize_rulesVisualize Association Rules
tidylearn documentation built on Feb. 6, 2026, 5:07 p.m.