openai_embedding | R Documentation |
Generate Embeddings Using OpenAI API
openai_embedding(
.input,
.model = "text-embedding-3-small",
.truncate = TRUE,
.timeout = 120,
.dry_run = FALSE,
.max_tries = 3,
.verbose = FALSE
)
.input |
An existing LLMMessage object (or a character vector of texts to embed) |
.model |
The embedding model identifier (default: "text-embedding-3-small"). |
.truncate |
Whether to truncate inputs to fit the model's context length (default: TRUE). |
.timeout |
Timeout for the API request in seconds (default: 120). |
.dry_run |
If TRUE, perform a dry run and return the request object. |
.max_tries |
Maximum retry attempts for requests (default: 3). |
.verbose |
Should information about current ratelimits be printed? (default: FALSE) |
A tibble with two columns: input
and embeddings
.
The input
column contains the texts sent to embed, and the embeddings
column
is a list column where each row contains an embedding vector of the sent input.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.