pop_het_obs | R Documentation |
This function computes population heterozygosity, using the formula of Nei (1987).
pop_het_obs(
.x,
by_locus = FALSE,
include_global = FALSE,
n_cores = bigstatsr::nb_cores()
)
.x |
a |
by_locus |
boolean, determining whether Ho should be returned by locus(TRUE), or as a single genome wide value (FALSE, the default). |
include_global |
boolean determining whether, besides the population
specific estimates, a global estimate should be appended. Note that this
will return a vector of n populations plus 1 (the global value), or a
matrix with n+1 columns if |
n_cores |
number of cores to be used, it defaults to
|
Within population observed heterozygosity \hat{h}_o
for a
locus with m
alleles is defined as:
\hat{h}_o=
1-\sum_{k=1}^{s} \sum_{i=1}^{m} \hat{X}_{kii}/s
where
\hat{X}_{kii}
represents the proportion of homozygote i
in the
sample for the k
th population and
s
the number of
populations,
following equation 7.38 in Nei(1987) on pp.164. In our
specific case, there are only two alleles, so m=2
. For population
specific estimates, the sum is done over a single value of k
.
\hat{h}_o
at the genome level is simply the mean of the locus
estimates.
a vector of mean population observed heterozygosities (if
by_locus=FALSE
), or a matrix of estimates by locus (rows are loci,
columns are populations, by_locus=TRUE
)
Nei M. (1987) Molecular Evolutionary Genetics. Columbia University Press
example_gt <- load_example_gt("grouped_gen_tbl")
# Compute expected heterozygosity
example_gt %>% pop_het_obs()
# To include the global expected heterozygosity, set include_global = TRUE
example_gt %>% pop_het_obs(include_global = TRUE)
# To return by locus, set by_locus = TRUE
example_gt %>% pop_het_obs(by_locus = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.