knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(tidypredict) library(earth) library(dplyr)
| Function |Works|
|---------------------------------------------------------------|-----|
|tidypredict_fit(), tidypredict_sql(), parse_model() | ✔ |
|tidypredict_to_column() | ✔ |
|tidypredict_test() | ✔ |
|tidypredict_interval(), tidypredict_sql_interval() | ✗ |
|parsnip | ✔ |
tidypredict_ functionslibrary(earth) data("etitanic", package = "earth") model <- earth(age ~ sibsp + parch, data = etitanic, degree = 3)
Create the R formula
r
tidypredict_fit(model)
SQL output example
r
tidypredict_sql(model, dbplyr::simulate_odbc())
Add the prediction to the original table ```r library(dplyr)
etitanic %>% tidypredict_to_column(model) %>% glimpse() ```
tidypredict results match to the model's predict() results
r
tidypredict_test(model, etitanic)tidypredict supports the glm argument as well:
model <- earth(survived ~ ., data = etitanic, glm = list(family = binomial), degree = 2 ) tidypredict_fit(model)
The spec sets the is_glm entry to 1, as well as the family and link entries.
str(parse_model(model), 2)
parsnip fitted models are also supported by tidypredict:
library(parsnip) p_model <- mars(mode = "regression", prod_degree = 3) %>% set_engine("earth") %>% fit(age ~ sibsp + parch, data = etitanic) tidypredict_fit(p_model)
Here is an example of the model spec:
pm <- parse_model(model) str(pm, 2)
str(pm$terms[1:2])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.