Nothing
## ----include=FALSE------------------------------------------------------------
# Set path to plotly screenshot. We don't run the plotly code chunk as most servers do not have javascript libraries needed for interactive plotting
screenshot <- "../man/figures/plotly.png"
# The chunk below uses Rmd in man/fragments to avoid duplication, as the content is shared with the vignette and README. As suggested here: https://www.garrickadenbuie.com/blog/dry-vignette-and-readme/
visual_cue <- "../man/figures/logo_interaction-01.png"
## ----eval=FALSE---------------------------------------------------------------
# # Article workflow
#
# library(tidyverse)
# library(Seurat)
# library(SingleR)
# library(plotly)
# library(tidyHeatmap)
# library(ggalluvial)
# library(ggplot2)
# library(tidyseurat)
# options(future.globals.maxSize = 50068 * 1024^2)
#
# # Use colourblind-friendly colours
# friendly_cols <- dittoSeq::dittoColors()
#
# # Set theme
# custom_theme <-
# list(
# scale_fill_manual(values = friendly_cols),
# scale_color_manual(values = friendly_cols),
# theme_bw() +
# theme(
# panel.border = element_blank(),
# axis.line = element_line(),
# panel.grid.major = element_line(size = 0.2),
# panel.grid.minor = element_line(size = 0.1),
# text = element_text(size = 9),
# legend.position = "bottom",
# strip.background = element_blank(),
# axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
# axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
# axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
# )
# )
#
# PBMC_clean_scaled_UMAP_cluster_cell_type <- readRDS("dev/PBMC_clean_scaled_UMAP_cluster_cell_type.rds")
## ----eval=FALSE---------------------------------------------------------------
# p1 =
# PBMC_clean_scaled_UMAP_cluster_cell_type %>%
# pivot_longer(
# c(mito.fraction, S.Score, G2M.Score),
# names_to="property",
# values_to="Value"
# ) %>%
# mutate(property = factor(property, levels = c("mito.fraction", "G2M.Score", "S.Score"))) %>%
# ggplot(aes(sample, Value)) +
# geom_boxplot(outlier.size = 0.5 ) +
# facet_wrap(~property, scales = "free_y" ) +
# custom_theme +
# theme(aspect.ratio=1)
## ----eval=FALSE---------------------------------------------------------------
# p2 =
# PBMC_clean_scaled_UMAP_cluster_cell_type %>%
# sample_n(20000) %>%
# ggplot(aes(UMAP_1, UMAP_2, color=seurat_clusters)) +
# geom_point(size=0.05, alpha=0.2) +
# custom_theme +
# theme(aspect.ratio=1)
#
# PBMC_clean_scaled_UMAP_cluster_cell_type %>%
# sample_n(20000) %>%
# plot_ly(
# x = ~`UMAP_1`,
# y = ~`UMAP_2`,
# z = ~`UMAP_3`,
# color = ~seurat_clusters,
# colors = friendly_cols[1:24],sizes = 50, size = 1
# )
#
# markers = readRDS("dev/PBMC_marker_df.rds")
## ----eval=FALSE---------------------------------------------------------------
# p3 =
# PBMC_clean_scaled_UMAP_cluster_cell_type %>%
# arrange(first.labels) %>%
# mutate(seurat_clusters = fct_inorder(seurat_clusters)) %>%
# join_features(features=c("CD3D", "HLA-DRB1")) %>%
# ggplot(aes(y=seurat_clusters , x=.abundance_SCT, fill=first.labels)) +
# geom_density_ridges(bandwidth = 0.2) +
# facet_wrap(~ .feature, nrow = 2) +
# coord_flip() +
# custom_theme
## ----eval=FALSE---------------------------------------------------------------
# # Plot heatmap
# p4 =
# PBMC_clean_scaled_UMAP_cluster_cell_type %>%
# sample_n(2000) %>%
# DoHeatmap(
# features = markers$gene,
# group.colors = friendly_cols
# )
## ----eval=FALSE---------------------------------------------------------------
# p5 =
# PBMC_clean_scaled_UMAP_cluster_cell_type %>%
# sample_n(1000) %>%
# join_features(features=markers$gene) %>%
# mutate(seurat_clusters = as.integer(seurat_clusters)) %>%
# filter(seurat_clusters<10) %>%
# group_by(seurat_clusters) %>%
#
# # Plot heatmap
# heatmap(
# .row = .feature,
# .column = .cell,
# .value = .abundance_SCT,
# palette_grouping = list(rep("black",9)),
# palette_value = circlize::colorRamp2(c(-1.5, 0, 1.5), c("purple", "black", "yellow")),
#
# # ComplexHeatmap parameters
# row_gap = unit(0.1, "mm"), column_gap = unit(0.1, "mm")
# ) %>%
#
# # Add annotation
# add_tile(sample, palette = friendly_cols[1:7]) %>%
# add_point(PC_1)
## ----eval=FALSE---------------------------------------------------------------
# p6 =
# PBMC_clean_scaled_UMAP_cluster_cell_type %>%
# unite("cluster_cell_type", c(first.labels, seurat_clusters), remove=FALSE) %>%
# pivot_longer(
# c(seurat_clusters, first.labels_single),
# names_to = "classification", values_to = "value"
# ) %>%
#
# ggplot(aes(x = classification, stratum = value, alluvium = cell,
# fill = first.labels, label = value)) +
# scale_x_discrete(expand = c(1, 1)) +
# geom_flow() +
# geom_stratum(alpha = .5) +
# # geom_text(stat = "stratum", size = 3) +
# geom_text_repel(stat = "stratum", size = 3,
# nudge_x = 0.05,
# direction = "y",
# angle = 0,
# vjust = 0,
# segment.size = 0.2
# ) +
# scale_fill_manual(values = friendly_cols) +
# #guides(fill = FALSE) +
# coord_flip() +
# theme_bw() +
# theme(
# panel.border = element_blank(),
# axis.line = element_line(),
# panel.grid.major = element_line(size = 0.2),
# panel.grid.minor = element_line(size = 0.1),
# text = element_text(size = 9),
# legend.position = "bottom",
# strip.background = element_blank(),
# axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
# axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
# axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.