knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(timeSeriesDataSets) library(ggplot2)
The timeSeriesDataSets
package provides a collection of time series datasets for R, with suffixes (_ts
, _mts
, _tbl_ts
) added based on the object type and class to clearly indicate their time series nature. This helps users easily identify time series datasets by their names. The datasets are sourced from various R packages, with modified names to reflect their time series structure. In this vignette, we will explore these datasets and demonstrate how to use them in your analyses.
To use the datasets from the timeSeriesDataSets
package, you first need to install and load the package. You can install it from CRAN or from a local source if you're developing it.
# Install the package from CRAN # install.packages("timeSeriesDataSets") # Load the package library(timeSeriesDataSets)
The AirPassengers_ts
dataset is a classic time series that shows the monthly number of passengers from 1949 to 1960.
Note that the timeSeriesDataSets
package adds a _ts suffix to identify datasets like AirPassengers_ts as time series.
# Load the dataset data("AirPassengers_ts") # Check the class of the dataset class(AirPassengers_ts) # Display the first few rows of the dataset head(AirPassengers_ts)
You can use these time series datasets for various time series analyses and visualizations. For example, you can plot the data to visualize trends over time.
# Convert AirPassengers to a data frame for use with ggplot2 air_df <- data.frame( Month = time(AirPassengers_ts), Passengers = as.numeric(AirPassengers_ts) ) # Time series plot ggplot(air_df, aes(x = Month, y = Passengers)) + geom_line(color = "blue") + labs(title = "International Airline Passengers (1949-1960)", x = "Date", y = "Number of Passengers") + theme_minimal()
We can extract the trend and seasonality components from the decomposed time series.
# Decompose the time series decomposed_ap <- decompose(AirPassengers_ts) # Extract trend and seasonality trend <- decomposed_ap$trend seasonal <- decomposed_ap$seasonal # Create a data frame for ggplot2 decomposed_df <- data.frame( Month = time(AirPassengers_ts), Passengers = as.numeric(AirPassengers_ts), Trend = trend, Seasonal = seasonal ) # Plot trend and seasonality ggplot(decomposed_df, aes(x = Month)) + geom_line(aes(y = Passengers), color = "blue", alpha = 0.6) + geom_line(aes(y = Trend), color = "red", linetype = "dashed") + geom_line(aes(y = Seasonal + mean(Passengers)), color = "green", linetype = "dotted") + labs(title = "Trend and Seasonality in AirPassengers Dataset", x = "Date", y = "Number of Passengers") + theme_minimal()
The timeSeriesDataSets
package provides a rich collection of time series datasets for analysis. With these datasets, you can perform various time series analyses and gain insights into trends and patterns over time. The timeSeriesDataSets
package aims to provide a comprehensive set of time series datasets that have been sourced from various R packages and modified to fit specific time series object conventions. This package should be a valuable resource for anyone working with time series data in R.
We encourage you to explore the datasets and leverage the functionality of this package to enhance your time series analysis and research.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.