Nothing
#' Linear model plot type
#'
#' @description Type function for plotting a linear model fit.
#' Arguments are passed to \code{\link[stats]{lm}}.
#'
#' @inheritParams type_glm
#' @importFrom stats lm predict
#' @examples
#' # "lm" type convenience string
#' tinyplot(Sepal.Width ~ Petal.Width, data = iris, type = "lm")
#'
#' # Grouped model fits (here: illustrating an example of Simpson's paradox)
#' tinyplot(Sepal.Width ~ Petal.Width | Species, data = iris, type = "lm")
#' tinyplot_add(type = "p")
#'
#' # Use `type_lm()` to pass extra arguments for customization
#' tinyplot(Sepal.Width ~ Petal.Width, data = iris, type = type_lm(level = 0.8))
#' @export
type_lm = function(se = TRUE, level = 0.95) {
assert_flag(se)
out = list(
draw = draw_ribbon(),
data = data_lm(se = se, level = level),
name = if (isTRUE(se)) "ribbon" else "l"
)
class(out) = "tinyplot_type"
return(out)
}
data_lm = function(se, level, ...) {
fun = function(datapoints, ...) {
dat = split(datapoints, list(datapoints$facet, datapoints$by))
dat = lapply(dat, function(x) {
if (nrow(x) == 0) return(x)
if (nrow(x) < 3) {
x$y = NA
return(x)
}
fit = lm(y ~ x, data = x)
nd = data.frame(x = seq(min(x$x, na.rm = TRUE), max(x$x, na.rm = TRUE), length.out = 100))
nd$by = x$by[1]
nd$facet = x$facet[1]
if (se == TRUE) {
p = predict(fit, newdata = nd, se.fit = TRUE)
p = ci(p$fit, p$se.fit, conf.level = level, fit$df.residual)
nd$y = p$estimate
nd$ymax = p$conf.high
nd$ymin = p$conf.low
} else {
nd$y = predict(fit, newdata = nd)
}
nd
})
datapoints = do.call(rbind, dat)
datapoints = datapoints[order(datapoints$facet, datapoints$by, datapoints$x), ]
out = list(datapoints = datapoints)
return(out)
}
return(fun)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.