Nothing
shiny::tagList(
# Message no data
shiny::conditionalPanel(
condition = "output.activate_spatial==false || output.cond_smoothing_ok==false", {
shiny::h3(shiny::strong("Data loading required to estimate the model."))
}),
shiny::fluidRow(
shiny::column(width = 1),
shiny::column(
width = 10,
# Message no models estimable with the loaded data
shiny::conditionalPanel(
"output.activate_spatial==true && output.cond_smoothing_ok==true && output.cond_est1==false",{
shiny::fluidPage(
shiny::textOutput("warning_fit1")
)
}),
# Main panel
shiny::conditionalPanel(
"output.activate_spatial==true && output.cond_smoothing_ok==true && output.cond_est1==true",
## Model specification
shiny::h3(shiny::strong("Model specification")),## column model specification
shinyjs::useShinyjs(),
shinybusy::add_busy_spinner(position = 'bottom-left', height = "100px", width = "100px"),
shiny::wellPanel(
shiny::h3(shiny::strong("1) Likelihood")),
shiny::uiOutput("choice_lik"),
shiny::h3(shiny::strong("2) Random Effects")),
shiny::fluidRow(
shiny::column(
width = 6,
shiny::radioButtons(
"prior_reff",
"Select the prior setting for the ustructured random
effects (ignored in spatio-temporal models):",
choices = c("Gaussian" = "normal",
"Robust (Student's t)" = "t",
"Shrinkage (Variance Gamma)" = "VG")
)
),
shiny::column(
width = 6,
shiny::conditionalPanel(
"output.cond_est2 == true",{
shiny::uiOutput("choice_str_reff")
})
)
)
),
shiny::hr(style = "border-top: 1px solid #000000;"),
shiny::h3(shiny::strong("Settings about the MCMC algorithm")),
# Settings HMC
shiny::fluidRow(
shiny::column(
width = 6,
shiny::br(),
shiny::numericInput(inputId = "iter", label = "MC iterations (half as warm-up)",
min = 100, max = 10000, step = 1,value = 4000),
shiny::br(),shiny::br(),
shiny::checkboxInput(inputId = "multiple_chains",
label = "Multiple chains approach", value = TRUE),
shiny::br(),
),
shiny::column(
width = 6,
shiny::wellPanel(
id = "parallel_panel",
shiny::numericInput(inputId = "chains", label = "Number of chains",
min = 2, max = 6, step = 1,value = 4),
shiny::fluidRow(
shiny::column(
width = 5,
style = "margin-top: 12px;",
shiny::checkboxInput(inputId = "parallel", label = "Parallel computation", value = TRUE)
),
shiny::column(
width = 5,
offset = 2,
shiny::numericInput(inputId = "cores", label = "Number of cores", min = 2,
max = parallel::detectCores(), step = 1,value = 4)
)
)
)
)
),
shiny::br(),
shiny::wellPanel(
shiny::h4(shiny::strong("Additional options for the HMC algorithm")),
shiny::fluidRow(
shiny::column(
width = 5,
shiny::sliderInput(inputId = "max_tree", label = "Maximum treedepth",
min = 8, max = 18, step = 1, value = 10
)
),
shiny::column(
width = 5,
offset = 2,
shiny::sliderInput(inputId = "adapt_delta", label = "adapt_delta",
min = .6, max = 0.99, step = 0.01, value = 0.8)
)
)
),
# Fit model and results
shiny::br(),shiny::br(),
shiny::actionButton(inputId = "fit_model", label = "Fit Model"),
shiny::br(),shiny::br(),
shiny::conditionalPanel(
condition = "output.cond_model_fitting == true",
shiny::wellPanel(
shiny::fluidRow(
shiny::column(
width = 6,
shiny::tags$head(shiny::tags$style("#show_prog{overflow-y:scroll; max-height: 300px; overflow-x:scroll;}")),
shiny::verbatimTextOutput("show_prog")
),
shiny::column(
width = 6,
shiny::conditionalPanel(
condition = "output.cond_model_fitted == true",
shiny::h3("Model fitted. Checks on the Monte Carlo algorithm."),
shiny::h4("Divergent transitions:"),
shiny::verbatimTextOutput("show_div"),
shiny::h4("Tree depth:"),
shiny::verbatimTextOutput("show_tree")
)
)
)
)
)
)
),
shiny::column(width = 1),
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.