McLachlan150: Mixture of two standard normal distributions

Description Usage Format Author(s) References Examples

Description

This simulated data set are discussed by McLachlan and Peel (2000). The data consists of 100 observations generated from a 3-component bivariate normal mixture model with equal mixing proportions. Fifty outliers, generated from a uniform distribution over the range -10 to 10 on each variate are added to the original data. Thus a sample of 150 observations is obtained.

Usage

1

Format

A data frame with 100 observations on the following 3 variables.

x

a numeric vector of x-coordinates

y

a numeric vector of y-coordinates

c

a numeric vector of cluster memberships

Author(s)

P. Neytchev, P. Filzmoser, R. Patnaik, A. Eisl and R. Boubela, <P.Filzmoser@tuwien.ac.at> http://www.statistik.tuwien.ac.at/public/filz/

References

McLachlan, G.J. and Peel, D. (2000). Finite mixture models. Wiley, New York.

Examples

1
2
3
4
5
6
7
data(McLachlan150)
str(McLachlan150)
# Example needs some computing time:
#d <- as.matrix(McLachlan150[,1:2])
#est.tle <- TLE(d~1,"mvtnormal",data=d,Density=FLXmclust.Density,
#           Estimate=FLXmclust.Estimate,msglvl=1,nc=3,class="hard")
#tleplot(est.tle,as.data.frame(d),main="TLE Scatter Plot")

Example output

'data.frame':	150 obs. of  3 variables:
 $ x: num  1.469 0.138 1.078 -3.163 1.179 ...
 $ y: num  3.85 4.07 2.58 2.9 3.44 ...
 $ c: int  1 1 1 1 1 1 1 1 1 1 ...

tlemix documentation built on May 2, 2019, 5:57 a.m.