# McLachlan150: Mixture of two standard normal distributions In tlemix: Trimmed Maximum Likelihood Estimation

## Description

This simulated data set are discussed by McLachlan and Peel (2000). The data consists of 100 observations generated from a 3-component bivariate normal mixture model with equal mixing proportions. Fifty outliers, generated from a uniform distribution over the range -10 to 10 on each variate are added to the original data. Thus a sample of 150 observations is obtained.

## Usage

 `1` ```data(McLachlan150) ```

## Format

A data frame with 100 observations on the following 3 variables.

`x`

a numeric vector of x-coordinates

`y`

a numeric vector of y-coordinates

`c`

a numeric vector of cluster memberships

## Author(s)

P. Neytchev, P. Filzmoser, R. Patnaik, A. Eisl and R. Boubela, <P.Filzmoser@tuwien.ac.at> http://www.statistik.tuwien.ac.at/public/filz/

## References

McLachlan, G.J. and Peel, D. (2000). Finite mixture models. Wiley, New York.

## Examples

 ```1 2 3 4 5 6 7``` ```data(McLachlan150) str(McLachlan150) # Example needs some computing time: #d <- as.matrix(McLachlan150[,1:2]) #est.tle <- TLE(d~1,"mvtnormal",data=d,Density=FLXmclust.Density, # Estimate=FLXmclust.Estimate,msglvl=1,nc=3,class="hard") #tleplot(est.tle,as.data.frame(d),main="TLE Scatter Plot") ```

### Example output

```'data.frame':	150 obs. of  3 variables:
\$ x: num  1.469 0.138 1.078 -3.163 1.179 ...
\$ y: num  3.85 4.07 2.58 2.9 3.44 ...
\$ c: int  1 1 1 1 1 1 1 1 1 1 ...
```

tlemix documentation built on May 2, 2019, 5:57 a.m.