Nothing
#' Calculate the size of each topic in a topic model
#'
#' Calculate the size of each topic in a topic model based on the
#' number of fractional tokens found in each topic.
#'
#' @param topic_model a fitted topic model object from one of the following:
#' \code{\link[topicmodels]{tm-class}}
#'
#' @return A vector of topic sizes with length equal to the number of topics in the fitted model
#'
#' @references {
#' Jordan Boyd-Graber, David Mimno, and David Newman, 2014.
#' \emph{Care and Feeding of Topic Models: Problems, Diagnostics, and Improvements.}
#' CRC Handbooks ofModern Statistical Methods. CRC Press, Boca Raton, Florida.
#' }
#'
#' @export
#'
#' @examples
#'
#' # Using the example from the LDA function
#' library(topicmodels)
#' data("AssociatedPress", package = "topicmodels")
#' lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
#' topic_size(lda)
topic_size <- function(topic_model){
UseMethod("topic_size")
}
#' @export
topic_size.TopicModel <- function(topic_model){
# Obtain the beta matrix from the topicmodel object
beta_mat <- exp(topic_model@beta)
# Normalize the beta values within each topic
# SO link for reference - https://stats.stackexchange.com/a/51750
beta_normed <- beta_mat %*% diag(1/colSums(beta_mat))
# Sum the partial tokens per topic
rowSums(beta_normed, na.rm = TRUE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.