| transform_linear_transformation | R Documentation |
Given transformation_matrix and mean_vector, will flatten the
torch_tensor and subtract mean_vector from it which is then followed by
computing the dot product with the transformation matrix and then reshaping
the tensor to its original shape.
transform_linear_transformation(img, transformation_matrix, mean_vector)
img |
A |
transformation_matrix |
(Tensor): tensor |
mean_vector |
(Tensor): tensor D, D = C x H x W. |
whitening transformation: Suppose X is a column vector zero-centered data.
Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
perform SVD on this matrix and pass it as transformation_matrix.
Other unitary_transforms:
transform_adjust_brightness(),
transform_adjust_contrast(),
transform_adjust_gamma(),
transform_adjust_hue(),
transform_adjust_saturation(),
transform_affine(),
transform_center_crop(),
transform_convert_image_dtype(),
transform_crop(),
transform_grayscale(),
transform_hflip(),
transform_normalize(),
transform_pad(),
transform_perspective(),
transform_resize(),
transform_rgb_to_grayscale(),
transform_rotate(),
transform_to_tensor(),
transform_vflip()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.