Nothing
#' Tiny ImageNet dataset
#'
#' Prepares the Tiny ImageNet dataset and optionally downloads it.
#'
#' @param root directory path to download the dataset.
#' @param split dataset split, `train`, `validation` or `test`.
#' @param download whether to download or not the dataset.
#' @param ... other arguments passed to [image_folder_dataset()].
#'
#' @family dataset
#'
#' @export
tiny_imagenet_dataset <- torch::dataset(
"tiny_imagenet",
inherit = image_folder_dataset,
tar_name = "tiny-imagenet-200",
url = "http://cs231n.stanford.edu/tiny-imagenet-200.zip",
initialize = function(root, split='train', download = FALSE, ...) {
root <- normalizePath(root, mustWork = FALSE)
if (!fs::dir_exists(root))
fs::dir_create(root)
self$root_path <- root
if (download)
self$download()
super$initialize(root = fs::path_join(c(root, self$tar_name, split)), ...)
},
download = function() {
p <- fs::path_join(c(self$root_path, self$tar_name))
if (fs::dir_exists(p))
return(NULL)
raw_path <- fs::path_join(c(self$root_path, "tiny-imagenet-200.zip"))
rlang::inform("Downloading tiny imagenet dataset!")
p <- download_and_cache(self$url)
fs::file_copy(p, raw_path)
rlang::inform("Download complete. Now unzipping.")
utils::unzip(raw_path, exdir = self$root_path)
# organize validation images
val_path <- fs::path_join(c(self$root_path, self$tar_name, "val"))
val_images <- read.table(fs::path_join(c(val_path, "val_annotations.txt")))
fs::dir_create(
fs::path(val_path, unique(val_images$V2))
)
fs::file_move(
fs::path(val_path, "images", val_images$V1),
fs::path(val_path, val_images$V2, val_images$V1)
)
fs::dir_delete(fs::path(val_path, "images"))
rlang::inform("Done!")
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.