Nothing
context("models-convnext")
test_that("non-pretrained model_convnext_*_1k work, with or wo a changed classification layer", {
expect_no_error(
model_1k <- model_convnext_tiny_1k(pretrained = FALSE)
)
input <- torch_randn(3, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(3, 1000))
expect_no_error(
model_1k <- model_convnext_base_1k(pretrained = FALSE)
)
input <- torch_randn(1, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(1, 1000))
expect_no_error(
model_1k <- model_convnext_large_1k(pretrained = FALSE)
)
input <- torch_randn(1, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(1, 1000))
expect_no_error(
model <- model_convnext_tiny_1k(pretrained = FALSE, num_classes = 130)
)
input <- torch_randn(4, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(4, 130))
expect_no_error(
model_1k <- model_convnext_small_22k1k(pretrained = FALSE, num_classes = 37)
)
input <- torch_randn(2, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(2, 37))
expect_no_error(
model_1k <- model_convnext_base_1k(pretrained = FALSE, num_classes = 10)
)
input <- torch_randn(1, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(1, 10))
expect_no_error(
model_1k <- model_convnext_large_1k(pretrained = FALSE, num_classes = 10)
)
input <- torch_randn(1, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(1, 10))
rm(model_1k)
rm(model)
gc()
})
test_that("pretrained model_convnext_*_1k works", {
expect_no_error(
model_1k <- model_convnext_tiny_1k(pretrained = TRUE)
)
input <- torch_randn(5, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(5, 1000))
expect_no_error(
model_1k <- model_convnext_base_1k(pretrained = TRUE)
)
input <- torch_randn(4, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(4, 1000))
rm(model_1k)
gc()
})
test_that("pretrained model_convnext_*_22k works", {
skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1,
"Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.")
expect_no_error(
model_22k <- model_convnext_tiny_22k(pretrained = TRUE)
)
input <- torch_randn(5, 3, 224, 224)
model_22k$eval()
out <- model_22k(input)
expect_tensor_shape(out, c(5, 21841))
expect_no_error(
model_22k <- model_convnext_small_22k(pretrained = TRUE)
)
input <- torch_randn(2, 3, 224, 224)
model_22k$eval()
out <- model_22k(input)
expect_tensor_shape(out, c(2, 21841))
expect_no_error(
model_1k <- model_convnext_small_22k1k(pretrained = FALSE)
)
input <- torch_randn(2, 3, 224, 224)
model_1k$eval()
out <- model_1k(input)
expect_tensor_shape(out, c(2, 21841))
expect_no_error(
model_22k <- model_convnext_base_22k(pretrained = TRUE)
)
input <- torch_randn(1, 3, 224, 224)
model_22k$eval()
out <- model_22k(input)
expect_tensor_shape(out, c(1, 21841))
rm(model_22k)
gc()
})
test_that("pretrained model_convnext_large_* works", {
skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1,
"Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.")
expect_no_error(
model_22k <- model_convnext_large_1k(pretrained = TRUE)
)
input <- torch_randn(1, 3, 224, 224)
model_22k$eval()
out <- model_22k(input)
expect_tensor_shape(out, c(1, 1000))
expect_no_error(
model_22k <- model_convnext_large_22k(pretrained = TRUE)
)
input <- torch_randn(1, 3, 224, 224)
model_22k$eval()
out <- model_22k(input)
expect_tensor_shape(out, c(1, 21841))
rm(model_22k)
gc()
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.