Nothing
context("models-mobilenetv3")
test_that("tests for non-pretrained model_mobilenet_v3_large", {
model_large <- model_mobilenet_v3_large(pretrained = FALSE)
input <- torch_randn(1, 3, 224, 224)
model_large$eval()
out <- model_large(input)
expect_tensor_shape(out, c(1, 1000))
model <- model_mobilenet_v3_large(pretrained = FALSE,num_classes = 10)
input <- torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 10))
rm(model_large)
rm(model)
gc()
})
test_that("tests for pretrained model_mobilenet_v3_large", {
model_large <- model_mobilenet_v3_large(pretrained = TRUE)
input <- torch_randn(1, 3, 224, 224)
model_large$eval()
out <- model_large(input)
expect_tensor_shape(out, c(1, 1000))
rm(model_large)
gc()
})
test_that("tests for non-pretrained model_mobilenet_v3_small", {
model_small <- model_mobilenet_v3_small(pretrained = FALSE)
input <- torch_randn(1, 3, 224, 224)
model_small$eval()
out <- model_small(input)
expect_tensor_shape(out, c(1, 1000))
rm(model_small)
gc()
})
test_that("tests for pretrained model_mobilenet_v3_small", {
model_small <- model_mobilenet_v3_small(pretrained = TRUE)
input <- torch_randn(1, 3, 224, 224)
model_small$eval()
out <- model_small(input)
expect_tensor_shape(out, c(1, 1000))
model <- model_mobilenet_v3_small(pretrained = FALSE,num_classes = 10)
input <- torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 10))
rm(model_small)
rm(model)
gc()
})
test_that("tests for model_mobilenet_v3_large with non-divisible input shapes", {
model <- model_mobilenet_v3_large(pretrained = FALSE)
input <- torch_randn(2, 3, 223, 225)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(2, 1000))
rm(model)
gc()
})
test_that("tests for model_mobilenet_v3_small with non-divisible input shapes", {
model <- model_mobilenet_v3_small(pretrained = FALSE)
input <- torch_randn(1, 3, 223, 225)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
rm(model)
gc()
})
test_that("tests for model_mobilenet_v3_small with varied width_mult", {
model <- model_mobilenet_v3_small(pretrained = FALSE, width_mult = 0.5)
input <- torch_randn(2, 3, 224, 224)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(2, 1000))
rm(model)
gc()
})
test_that("tests for model_mobilenet_v3_large with varied width_mult", {
model <- model_mobilenet_v3_large(pretrained = FALSE, width_mult = 0.5)
input <- torch_randn(1, 3, 224, 224)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
rm(model)
gc()
})
test_that("we can prune head of mobilenetv3 models", {
mobilenet <- model_mobilenet_v3_large(pretrained=TRUE)
expect_no_error(prune <- nn_prune_head(mobilenet, 1))
expect_true(inherits(prune, "nn_sequential"))
expect_equal(length(prune), 2)
expect_true(inherits(prune[[1]][1], "nn_sequential"))
input <- torch::torch_randn(1, 3, 256, 256)
out <- prune(input)
expect_tensor_shape(out, c(1, 960, 1, 1))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.