Nothing
test_that("tests for non-pretrained model_vit_b_16", {
model <- model_vit_b_16()
input <- torch::torch_randn(1, 3, 224, 224)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
model <- model_vit_b_16(num_classes = 10)
input <- torch::torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 10))
rm(model)
gc()
})
test_that("tests for pretrained model_vit_b_16", {
model <- model_vit_b_16(pretrained = TRUE)
input <- torch::torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
rm(model)
gc()
})
test_that("tests for non-pretrained model_vit_b_32", {
model <- model_vit_b_32()
input <- torch::torch_randn(1, 3, 224, 224)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
model <- model_vit_b_32(num_classes = 10)
input <- torch::torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 10))
rm(model)
gc()
})
test_that("tests for pretrained model_vit_b_32", {
skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1,
"Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.")
model <- model_vit_b_32(pretrained = TRUE)
input <- torch::torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
rm(model)
gc()
})
test_that("tests for non-pretrained model_vit_l_16", {
model <- model_vit_l_16()
input <- torch::torch_randn(1, 3, 224, 224)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
model <- model_vit_l_16(num_classes = 10)
input <- torch::torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 10))
rm(model)
gc()
})
test_that("tests for pretrained model_vit_l_16", {
skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1,
"Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.")
model <- model_vit_l_16(pretrained = TRUE)
input <- torch::torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
rm(model)
gc()
})
test_that("tests for non-pretrained model_vit_l_32", {
model <- model_vit_l_32()
input <- torch::torch_randn(1, 3, 224, 224)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
model <- model_vit_l_32(num_classes = 10)
input <- torch::torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 10))
rm(model)
gc()
})
test_that("tests for pretrained model_vit_l_32", {
skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1,
"Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.")
model <- model_vit_l_32(pretrained = TRUE)
input <- torch::torch_randn(1, 3, 224, 224)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
rm(model)
gc()
})
test_that("tests for model_vit_h_14", {
model <- model_vit_h_14()
input <- torch::torch_randn(1, 3, 518, 518)
model$eval()
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
skip_if(Sys.info()[["sysname"]] == "Linux", "Skipping on Ubuntu CI")
model <- model_vit_h_14(num_classes = 10)
input <- torch::torch_randn(1, 3, 518, 518)
out <- model(input)
expect_tensor_shape(out, c(1, 10))
rm(model)
gc()
})
test_that("tests for model_vit_h_14", {
skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1,
"Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.")
model <- model_vit_h_14(pretrained = TRUE)
input <- torch::torch_randn(1, 3, 518, 518)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
rm(model)
gc()
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.