Nothing
#' Wrap all pipeline
#'
#' @param data a dataframe to be analyzed
#' @param outcome a string representing the outcome variable
#' @param indep_vars a vector of strings to be considered
#' @param n_samples number of bootstrap samples
#' @param n_maximum_dim maximum number of variables
#' @param p_in entry p-value for choosing variable order
#' @param p_out exclusion p-value for choosing variable order
#' @param models a string representing the models to compare
#' @param test_partition_prop test partition proportion
#' @param perf_measure performance measure to be considered
#' @param x_label_offset x coordinate for plotting
#' @param y_label_offset y coordinate for plotting
#'
#'
#' @returns a list with the final object.
#' @export
wrapper_aucdim <- function(data, outcome, indep_vars,
n_samples = 100, n_maximum_dim = 5,
p_in = 0.50, p_out = 0.60,
models = c("SL.glm"),
test_partition_prop = 0.2,
perf_measure = "auc",
x_label_offset = 1, y_label_offset = 10
) {
obj <- bootstrap_data(data, outcome, indep_vars,
n_samples, n_maximum_dim) %>%
define_indepvars(p_in = p_in,
p_out = p_out) %>%
apply_model(models = models,
test_partition_prop = test_partition_prop,
perf_measure = perf_measure) %>%
summary_stats() %>%
plot_curve() %>%
compare_test(x_label_offset , y_label_offset)
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.