train.ada | R Documentation |
Provides a wrapping function for the ada
.
train.ada(formula, data, ..., subset, na.action = na.rpart)
formula |
a symbolic description of the model to be fit. |
data |
an optional data frame containing the variables in the model. |
... |
arguments passed to rpart.control. For stumps, use rpart.control(maxdepth=1,cp=-1,minsplit=0,xval=0). maxdepth controls the depth of trees, and cp controls the complexity of trees. The priors should also be fixed through the parms argument as discussed in the second reference. |
subset |
an optional vector specifying a subset of observations to be used in the fitting process. |
na.action |
a function that indicates how to process ‘NA’ values. Default=na.rpart. |
A object ada.prmdt with additional information to the model that allows to homogenize the results.
the parameter information was taken from the original function ada
.
The internal function is from package ada
.
data("Puromycin")
n <- seq_len(nrow(Puromycin))
.sample <- sample(n, length(n) * 0.75)
data.train <- Puromycin[.sample,]
data.test <- Puromycin[-.sample,]
modelo.ada <- train.ada(state~., data.train)
modelo.ada
prob <- predict(modelo.ada, data.test , type = "prob")
prob
prediccion <- predict(modelo.ada, data.test , type = "class")
prediccion
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.