train.bayes | R Documentation |
Provides a wrapping function for the naiveBayes
.
train.bayes(formula, data, laplace = 0, ..., subset, na.action = na.pass)
formula |
A formula of the form class ~ x1 + x2 + .... Interactions are not allowed. |
data |
Either a data frame of predictors (categorical and/or numeric) or a contingency table. |
laplace |
positive double controlling Laplace smoothing. The default (0) disables Laplace smoothing. |
... |
Currently not used. |
subset |
For data given in a data frame, an index vector specifying the cases to be used in the training sample. (NOTE: If given, this argument must be named.) |
na.action |
A function to specify the action to be taken if NAs are found. The default action is not to count them for the computation of the probability factors. An alternative is na.omit, which leads to rejection of cases with missing values on any required variable. (NOTE: If given, this argument must be named.) |
A object bayes.prmdt with additional information to the model that allows to homogenize the results.
the parameter information was taken from the original function naiveBayes
.
The internal function is from package naiveBayes
.
# Classification
data("iris")
n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]
modelo.bayes <- train.bayes(Species ~., data.train)
modelo.bayes
prob <- predict(modelo.bayes, data.test, type = "prob")
prob
prediccion <- predict(modelo.bayes, data.test, type = "class")
prediccion
# Regression
len <- nrow(swiss)
sampl <- sample(x = 1:len,size = len*0.20,replace = FALSE)
ttesting <- swiss[sampl,]
ttraining <- swiss[-sampl,]
model.bayes <- train.bayes(Infant.Mortality~.,ttraining)
prediction <- predict(model.bayes, ttesting)
prediction
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.