Nothing
#' transforEmotion--package
#'
#' @description Implements sentiment and emotion analysis using \href{https://huggingface.co}{huggingface} transformer
#' zero-shot classification model pipelines on text and image data. The default text pipeline is
#' \href{https://huggingface.co/cross-encoder/nli-distilroberta-base}{Cross-Encoder's DistilRoBERTa} and default image/video pipeline
#' is \href{https://huggingface.co/openai/clip-vit-base-patch32}{Open AI's CLIP}. All other zero-shot classification model pipelines can be implemented using
#' their model name from \href{https://huggingface.co/models?pipeline_tag=zero-shot-classification}{https://huggingface.co/models?pipeline_tag=zero-shot-classification}.
#'
#' @references
#' Yin, W., Hay, J., & Roth, D. (2019).
#' Benchmarking zero-shot text classification: Datasets, evaluation and entailment approach.
#' arXiv preprint arXiv:1909.00161.
#'
#' @author Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu> and Aleksandar Tomasevic <atomashevic@ff.uns.ac.rs>
#'
#' @importFrom utils packageDescription
#'
"_PACKAGE"
#> [1] "_PACKAGE"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.