Description Usage Arguments Details Value References See Also Examples
This function is used to conduct the regression analysis of right-censored data using semiparametric transformation models. It calculates the estimators, standard errors and p values. A plot of estimated baseline cumulative hazard function and confidence intervals can be produced.
1 2 3 4 5 6 7 8 9 10 |
X |
design matrix |
delta |
censoring indicator. If Y_i is censored, |
Y |
observed event times |
plot.Lamb |
If TRUE, plot the estimated baseline cumulative hazard function and confidence intervals. The default is TRUE. |
alpha |
parameter in transformation function. Generally, α can
not be observed in medical applications. In that situation, |
trsmodel |
logical value indicating whether to implement transformation models. The default is TRUE. |
EM_itmax |
maximum iteration of EM algorithm. Defaults to 250. |
show_res |
show results after |
If α is unknown, we firse set α=alpha
.
Then, for each α, we estimate the parameters and record the value
of observed log-likelihood function. The α that maximizes the
observed log-likelihood function and the corresponding \hatβ and
\hatΛ(\cdot) are chosen as the best estimators. Nonparametric
maximum likelihood estimators are developed for the regression parameters
and cumulative intensity functions of these models based on censored data.
a list containing
beta.est | estimators of β | ||
SE.beta | standard errors of the estimated β | ||
SE.Ydot | standard errors of the estimated Λ(Y') | ||
Ydot | vector of sorted event times with duplicate values removed | ||
Lamb.est
| estimated baseline cumulative hazard | ||
lamb.est
| estimated jump sizes of baseline cumulative hazard function | ||
choose.alpha | the chosen α | ||
Lamb.upper | upper confidence limits for the estimated baseline cumulative hazard function | ||
Lamb.lower | lower confidence limits for the estimated baseline cumulative hazard function | ||
p.beta | P values of estimated β | ||
p.Lamb | P values of estimated baseline cumulative hazard | ||
p.beta |
Cheng, S.C., Wei, L.J., and Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika 82, 835-845.
Zeng, D. and Lin, D.Y. (2007). Maximum likelihood estimation in semiparametric regression models with censored data. J. R. Statist. Soc. B 69, 507-564.
Abramowitz, M., and Stegun, I.A. (1972). Handbook of Mathematical Functions (9th ed.). Dover Publications, New York.
Evans, M. and Swartz, T. (2000). Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford University Press.
Liu, Q. and Pierce, D.A. (1994). A note on Gauss-Hermite quadrature. Biometrika 81, 624-629.
Louis, T. (1982). Finding the Observed Information Matrix when Using the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 44(2), 226-233.
1 2 3 4 5 | gen_data = generate_data(200, 1, 0.5, c(-0.5,1))
delta = gen_data$delta
Y = gen_data$Y
X = gen_data$X
res.trans = trans_m(X, delta, Y, plot.Lamb = TRUE, show_res = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.