Nothing
#' @title Validate Column Names
#'
#' @description
#' This function checks if all column names of a data frame or tibble are within
#' a specified set of valid values. Depending on the specified type, it will
#' either throw an error, issue a warning, or send a message.
#'
#' @inheritParams validate_numeric
#' @param input A data.frame or tibble. validate_names() will run
#' colnames(input) to get the expected column names.
#' @param check_names A vector of column names as strings to check against
#' input.
#' @inheritParams validate_data_pull
#'
#' @return NULL. The function is used for its side effects.
#'
#' @author
#' Nicolas Foss, Ed.D., MS
#'
validate_names <- function(
input,
check_names,
type = c("error", "warning", "message"),
na_ok = TRUE,
null_ok = TRUE,
var_name = NULL,
calls = NULL
) {
# Validate the type argument
type <- match.arg(arg = type, choices = c("error", "warning", "message"))
# Define number of callers to go back
calls <- ifelse(is.null(calls), 2, calls)
# Get the input name, optionally using var_name
if (is.null(var_name)) {
input_name <- rlang::as_name(rlang::enquo(check_names))
} else {
# Validate var_name
validate_character_factor(input = var_name, type = "error", calls = 1)
# Initialize input_name using var_name
input_name <- var_name
}
# Check if the input is NULL
if (is.null(check_names)) {
if (!null_ok) {
validate_error_type(
input = input_name,
message = "must not be NULL.",
type = "error",
calls = calls
)
}
return(NULL)
}
# Check for NA values if na_ok is FALSE
if (!na_ok && any(is.na(input))) {
validate_error_type(
input = input_name,
message = "must not be a missing value.",
type = "error",
calls = calls
)
}
# Validate the valid_set input
validate_data_structure(
input = input,
structure_type = c("data.frame", "tibble"),
logic = "or",
type = "error",
calls = calls
)
# Validate check_names, ensure it has class character
validate_character_factor(input = check_names, type = "error", calls = 1)
# Get the column names of the target data
valid_set <- colnames(input)
# Check if all column names are within the valid set
invalid_values <- setdiff(x = check_names, y = valid_set)
# Check to ensure the invalid_values are not empty
if (length(invalid_values) > 0) {
if (length(valid_set) <= 10) {
# Clip invalid_values down to a length of <= 10
invalid_values <- head(invalid_values, n = 10)
# Call the validate_error_type function to handle the message display
# For small valid_set
validate_error_type(
input = input_name,
message = glue::glue(
"contains invalid column names such as {cli::col_grey(paste0('(', paste0(invalid_values, collapse = ', '), ')'))}. Valid column names are: {cli::col_blue(paste0('(', paste0(valid_set, collapse = ', '), ')'))}."
),
type = type,
calls = calls
)
} else {
# Clip invalid_values down to a length of <= 10
invalid_values <- head(invalid_values, n = 10)
# Call the validate_error_type function to handle the message display
# For large valid_set
# Clip valid_set down to a length of <= 10
valid_set <- head(valid_set, 10)
# Modified messaging
validate_error_type(
input = input_name,
message = glue::glue(
"contains invalid column names such as {cli::col_grey(paste0('(', paste0(invalid_values, collapse = ', '), ')'))}. Some examples of valid column names are: {cli::col_blue(paste0('(', paste0(valid_set, collapse = ', '), ',...', ')'))}."
),
type = type,
calls = calls
)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.