evaluate_aic | R Documentation |
evaluate_aic()
is a a generic for evaluating the Akaike's
'An Information Criterion' for a given input
evaluate_aic(x, ...)
## Default S3 method:
evaluate_aic(x, ...)
## S3 method for class 'trending_model'
evaluate_aic(x, data, as_tibble = FALSE, ...)
## S3 method for class 'list'
evaluate_aic(x, data, ...)
x |
An R object. |
... |
Not currently used. |
data |
a |
as_tibble |
Should the result be returned as tibble
( |
Specific methods are given for
trending_fit
and lists of these
models.
If as_tibble = TRUE
, or the input is a list of models then the
output will be a tibble with one row for each fitted
model columns corresponding to output generated with single model input.
Tim Taylor
#' @examples x = rnorm(100, mean = 0) y = rpois(n = 100, lambda = exp(1.5 + 0.5*x)) dat <- data.frame(x = x, y = y) poisson_model <- glm_model(y ~ x , family = "poisson") negbin_model <- glm_nb_model(y ~ x)
evaluate_aic(poisson_model, dat) evaluate_aic(list(poisson_model, negbin_model), data = dat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.