Nothing
#' Generic for calculating the AIC
#'
#' `evaluate_aic()` is a a generic for evaluating the Akaike's
#' 'An Information Criterion' for a given input
#'
#' @inheritParams calculate_aic
#'
#' @details Specific methods are given for
#' [`trending_fit`][trending::fit.trending_model()] and lists of these
#' models.
#'
#' @return If `as_tibble = TRUE`, or the input is a list of models then the
#' output will be a [tibble][tibble::tibble()] with one row for each fitted
#' model columns corresponding to output generated with single model input.
#'
#' @author Tim Taylor
#'
#' #' @examples
#' x = rnorm(100, mean = 0)
#' y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
#' dat <- data.frame(x = x, y = y)
#' poisson_model <- glm_model(y ~ x , family = "poisson")
#' negbin_model <- glm_nb_model(y ~ x)
#'
#' evaluate_aic(poisson_model, dat)
#' evaluate_aic(list(poisson_model, negbin_model), data = dat)
#'
#' @export
evaluate_aic <- function(x, ...) {
UseMethod("evaluate_aic")
}
# -------------------------------------------------------------------------
#' @aliases evaluate_aic.default
#' @rdname evaluate_aic
#' @export
evaluate_aic.default <- function(x, ...) {
not_implemented(x)
}
# -------------------------------------------------------------------------
#' @aliases evaluate_aic.trending_model
#' @rdname evaluate_aic
#' @export
evaluate_aic.trending_model <- calculate_aic.trending_model
# -------------------------------------------------------------------------
#' @aliases evaluate_aic.trending_list
#' @rdname evaluate_aic
#' @export
evaluate_aic.list <- calculate_aic.list
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.