Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message=FALSE-----------------------------------------------------
{
library(bayesplot)
library(brms)
library(dplyr)
library(ggplot2)
library(ggdist)
library(grid)
library(tidybayes)
library(tidyr)
library(trps)
library(viridis)
}
## -----------------------------------------------------------------------------
consumer_iso
## -----------------------------------------------------------------------------
baseline_1_iso
## -----------------------------------------------------------------------------
baseline_2_iso
## -----------------------------------------------------------------------------
con_tsar <- consumer_iso %>%
arrange(ecoregion, common_name) %>%
group_by(ecoregion, common_name) %>%
mutate(
id = row_number()
) %>%
ungroup() %>%
dplyr::select(id, common_name:d15n)
## -----------------------------------------------------------------------------
b1_tsar <- baseline_1_iso %>%
arrange(ecoregion, common_name) %>%
group_by(ecoregion, common_name) %>%
mutate(
id = row_number()
) %>%
ungroup() %>%
dplyr::select(id, ecoregion:d15n_b1)
## -----------------------------------------------------------------------------
b2_tsar <- baseline_2_iso %>%
arrange(ecoregion, common_name) %>%
group_by(ecoregion, common_name) %>%
mutate(
id = row_number()
) %>%
ungroup() %>%
dplyr::select(id, ecoregion:d15n_b2)
## -----------------------------------------------------------------------------
combined_iso_tsar <- con_tsar %>%
left_join(b1_tsar, by = c("id", "ecoregion")) %>%
left_join(b2_tsar, by = c("id", "ecoregion"))
## -----------------------------------------------------------------------------
combined_iso_tsar_1 <- combined_iso_tsar %>%
group_by(ecoregion, common_name) %>%
mutate(
c1 = mean(d13c_b1, na.rm = TRUE),
n1 = mean(d15n_b1, na.rm = TRUE),
c2 = mean(d13c_b2, na.rm = TRUE),
n2 = mean(d15n_b2, na.rm = TRUE),
l1 = 2
) %>%
ungroup() %>%
add_alpha()
## -----------------------------------------------------------------------------
combined_iso_tsar_1
## ----eval = FALSE-------------------------------------------------------------
# model_output_tsar <- brm(
# formula = two_source_model_ar(),
# prior = two_source_priors_ar(),
# stanvars = two_source_priors_params_ar(),
# data = combined_iso_tsar_1,
# family = gaussian(),
# chains = 2,
# iter = 4000,
# warmup = 1000,
# cores = 4,
# seed = 4,
# control = list(adapt_delta = 0.95)
# )
## -----------------------------------------------------------------------------
model_output_tsar
## -----------------------------------------------------------------------------
plot(model_output_tsar)
## -----------------------------------------------------------------------------
pp_check(model_output_tsar, resp = "alpha")
## -----------------------------------------------------------------------------
pp_check(model_output_tsar, resp = "d15n")
## -----------------------------------------------------------------------------
model_output_tsar
## -----------------------------------------------------------------------------
get_variables(model_output_tsar)
## -----------------------------------------------------------------------------
post_draws <- model_output_tsar %>%
gather_draws(b_alpha_ar_Intercept, b_d15n_tp_Intercept) %>%
mutate(
ecoregion = "Embayment",
common_name = "Lake Trout",
.variable = case_when(
.variable %in% "b_d15n_tp_Intercept" ~ "tp",
.variable %in% "b_alpha_ar_Intercept" ~ "ar"
)
) %>%
dplyr::select(common_name, ecoregion, .chain:.value)
## -----------------------------------------------------------------------------
post_draws
## ----message=FALSE------------------------------------------------------------
medians_ci <- model_output_tsar %>%
gather_draws(b_alpha_ar_Intercept,
b_d15n_tp_Intercept) %>%
median_qi() %>%
mutate(
ecoregion = "Embayment",
common_name = "Lake Trout",
.variable = case_when(
.variable %in% "b_d15n_tp_Intercept" ~ "tp",
.variable %in% "b_alpha_ar_Intercept" ~ "ar"
)
) %>%
mutate_if(is.numeric, round, digits = 2)
## -----------------------------------------------------------------------------
medians_ci
## -----------------------------------------------------------------------------
ggplot(data = post_draws, aes(x = .value)) +
geom_density() +
facet_wrap(~ .variable, scale = "free") +
theme_bw(base_size = 15) +
theme(
panel.grid = element_blank(),
strip.background = element_blank(),
) +
labs(
x = "P(Estimate | X)",
y = "Density"
)
## -----------------------------------------------------------------------------
ggplot(data = post_draws, aes(y = .value,
x = common_name)) +
stat_pointinterval() +
facet_wrap(~ .variable, scale = "free") +
theme_bw(base_size = 15) +
theme(
panel.grid = element_blank(),
strip.background = element_blank(),
) +
labs(
x = "P(Estimate | X)",
y = "Density"
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.