rpsftm | R Documentation |
Obtains the causal parameter estimate from the log-rank test and the hazard ratio estimate from the Cox model to adjust for treatment switching.
rpsftm(
data,
stratum = "",
time = "time",
event = "event",
treat = "treat",
rx = "rx",
censor_time = "censor_time",
base_cov = "",
low_psi = -1,
hi_psi = 1,
n_eval_z = 100,
treat_modifier = 1,
recensor = TRUE,
admin_recensor_only = TRUE,
autoswitch = TRUE,
gridsearch = FALSE,
alpha = 0.05,
ties = "efron",
tol = 1e-06,
boot = FALSE,
n_boot = 1000,
seed = NA
)
data |
The input data frame that contains the following variables:
|
stratum |
The name(s) of the stratum variable(s) in the input data. |
time |
The name of the time variable in the input data. |
event |
The name of the event variable in the input data. |
treat |
The name of the treatment variable in the input data. |
rx |
The name of the rx variable in the input data. |
censor_time |
The name of the censor_time variable in the input data. |
base_cov |
The names of baseline covariates (excluding treat) in the input data for the outcome Cox model. |
low_psi |
The lower limit of the causal parameter. |
hi_psi |
The upper limit of the causal parameter. |
n_eval_z |
The number of points between |
treat_modifier |
The optional sensitivity parameter for the constant treatment effect assumption. |
recensor |
Whether to apply recensoring to counterfactual
survival times. Defaults to |
admin_recensor_only |
Whether to apply recensoring to administrative
censoring times only. Defaults to |
autoswitch |
Whether to exclude recensoring for treatment arms
with no switching. Defaults to |
gridsearch |
Whether to use grid search to estimate the causal
parameter |
alpha |
The significance level to calculate confidence intervals. |
ties |
The method for handling ties in the Cox model, either "breslow" or "efron" (default). |
tol |
The desired accuracy (convergence tolerance) for |
boot |
Whether to use bootstrap to obtain the confidence
interval for hazard ratio. Defaults to |
n_boot |
The number of bootstrap samples. |
seed |
The seed to reproduce the bootstrap results. The seed from the environment will be used if left unspecified. |
We use the following steps to obtain the hazard ratio estimate and confidence interval had there been no treatment switching:
Use RPSFTM to estimate the causal parameter \psi
based on the
log-rank test for counterfactual untreated survival times for
both arms:
U_{i,\psi} = T_{C_i} + e^{\psi}T_{E_i}
Fit the Cox proportional hazards model to the observed survival times for the experimental group and the counterfactual survival times for the control group to obtain the hazard ratio estimate.
Use either the log-rank test p-value for the intention-to-treat (ITT)
analysis or bootstrap to construct the confidence interval for
hazard ratio. If bootstrapping is used, the confidence interval
and corresponding p-value are calculated based on a t-distribution with
n_boot - 1
degrees of freedom.
A list with the following components:
psi
: The estimated causal parameter.
psi_CI
: The confidence interval for psi
.
psi_CI_type
: The type of confidence interval for psi
,
i.e., "grid search", "root finding", or "bootstrap".
logrank_pvalue
: The two-sided p-value of the log-rank test
for the ITT analysis.
cox_pvalue
: The two-sided p-value for treatment effect based on
the Cox model.
hr
: The estimated hazard ratio from the Cox model.
hr_CI
: The confidence interval for hazard ratio.
hr_CI_type
: The type of confidence interval for hazard ratio,
either "log-rank p-value" or "bootstrap".
eval_z
: A data frame containing the log-rank test Z-statistics
evaluated at a sequence of psi
values. Used to plot and check
if the range of psi
values to search for the solution and
limits of confidence interval of psi
need be modified.
Sstar
: A data frame containing the counterfactual untreated
survival times and event indicators for each treatment group.
kmstar
: A data frame containing the Kaplan-Meier estimates
based on the counterfactual untreated survival times by treatment arm.
data_outcome
: The input data for the outcome Cox model.
fit_outcome
: The fitted outcome Cox model.
settings
: A list with the following components:
low_psi
: The lower limit of the causal parameter.
hi_psi
: The upper limit of the causal parameter.
n_eval_z
: The number of points between low_psi
and
hi_psi
(inclusive) at which to evaluate the log-rank
Z-statistics.
treat_modifier
: The sensitivity parameter for the
constant treatment effect assumption.
recensor
: Whether to apply recensoring to counterfactual
survival times.
admin_recensor_only
: Whether to apply recensoring to
administrative censoring times only.
autoswitch
: Whether to exclude recensoring for treatment
arms with no switching.
gridsearch
: Whether to use grid search to estimate the
causal parameter psi
.
alpha
: The significance level to calculate confidence
intervals.
ties
: The method for handling ties in the Cox model.
tol
: The desired accuracy (convergence tolerance)
for psi
.
boot
: Whether to use bootstrap to obtain the confidence
interval for hazard ratio.
n_boot
: The number of bootstrap samples.
seed
: The seed to reproduce the bootstrap results.
hr_boots
: The bootstrap hazard ratio estimates if boot
is
TRUE
.
psi_boots
: The bootstrap psi
estimates if boot
is
TRUE
.
Kaifeng Lu, kaifenglu@gmail.com
James M. Robins and Anastasios A. Tsiatis. Correcting for non-compliance in randomized trials using rank preserving structural failure time models. Communications in Statistics. 1991;20(8):2609-2631.
Ian R. White, Adbel G. Babiker, Sarah Walker, and Janet H. Darbyshire. Randomization-based methods for correcting for treatment changes: Examples from the CONCORDE trial. Statistics in Medicine. 1999;18:2617-2634.
library(dplyr)
# Example 1: one-way treatment switching (control to active)
data <- immdef %>% mutate(rx = 1-xoyrs/progyrs)
fit1 <- rpsftm(
data, time = "progyrs", event = "prog", treat = "imm",
rx = "rx", censor_time = "censyrs", boot = FALSE)
c(fit1$hr, fit1$hr_CI)
# Example 2: two-way treatment switching (illustration only)
# the eventual survival time
shilong1 <- shilong %>%
arrange(bras.f, id, tstop) %>%
group_by(bras.f, id) %>%
slice(n()) %>%
select(-c("ps", "ttc", "tran"))
shilong2 <- shilong1 %>%
mutate(rx = ifelse(co, ifelse(bras.f == "MTA", dco/ady,
1 - dco/ady),
ifelse(bras.f == "MTA", 1, 0)))
fit2 <- rpsftm(
shilong2, time = "tstop", event = "event",
treat = "bras.f", rx = "rx", censor_time = "dcut",
base_cov = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
"pathway.f"),
low_psi = -3, hi_psi = 3, boot = FALSE)
c(fit2$hr, fit2$hr_CI)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.