floss_cac | R Documentation |
Computes the arc count with edge and 'online' correction (CAC).
floss_cac(.mp, data_window, exclusion_zone = NULL)
.mp |
a |
data_window |
an |
exclusion_zone |
if a |
Original paper suggest using the classic statistical-process-control heuristic to set a threshold where a semantic change may occur in CAC. This may be useful in real-time implementation as we don't know in advance the number of domain changes to look for. Please check original paper (1).
Returns the input .mp
object a new name cac
with the corrected arc count and cac_final
the combination of cac
after repeated calls of floss()
.
Gharghabi S, Ding Y, Yeh C-CM, Kamgar K, Ulanova L, Keogh E. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE; 2017. p. 117-26.
Website: https://sites.google.com/site/onlinesemanticsegmentation/
Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
Other Semantic Segmentations:
floss_extract()
,
floss()
,
fluss_cac()
,
fluss_extract()
,
fluss_score()
,
fluss()
data <- mp_fluss_data$tilt_abp$data[1:1000] new_data <- mp_fluss_data$tilt_abp$data[1001:1010] w <- 10 mp <- tsmp(data, window_size = w, verbose = 0) data_window <- 1000 mp <- stompi_update(mp, new_data, data_window) mp <- floss_cac(mp, data_window)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.