| ts_integtune | R Documentation |
Integrated tuning over input sizes, preprocessing, augmentation, and model hyperparameters for time series.
ts_integtune(
input_size,
base_model,
folds = 10,
ranges = NULL,
preprocess = list(ts_norm_gminmax()),
augment = list(ts_aug_none())
)
input_size |
Integer vector. Candidate input window sizes. |
base_model |
Base model object for tuning. |
folds |
Integer. Number of cross-validation folds. |
ranges |
Named list of hyperparameter ranges to explore. |
preprocess |
List of preprocessing objects to compare. |
augment |
List of augmentation objects to apply during training. |
A ts_integtune object.
Salles, R., Pacitti, E., Bezerra, E., Marques, C., Pacheco, C., Oliveira, C., Porto, F., Ogasawara, E. (2023). TSPredIT: Integrated Tuning of Data Preprocessing and Time Series Prediction Models. Lecture Notes in Computer Science.
# Integrated search over input size, preprocessing and model hyperparameters
library(daltoolbox)
data(tsd)
# Build windows and split into train/test, then project to (X, y)
ts <- ts_data(tsd$y, 10)
samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)
# Configure integrated tuning: ranges for input_size, ELM (nhid, actfun), and preprocessors
tune <- ts_integtune(
input_size = 3:5,
base_model = ts_elm(),
ranges = list(nhid = 1:5, actfun = c('purelin')),
preprocess = list(ts_norm_gminmax())
)
# Run search; augmentation (if provided) is applied during training internally
model <- fit(tune, x = io_train$input, y = io_train$output)
# Forecast and evaluate on the held-out window
prediction <- predict(model, x = io_test$input[1,], steps_ahead = 5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)
ev_test <- evaluate(model, output, prediction)
ev_test
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.