| ts_mlp | R Documentation |
Create a time series prediction object based on a Multilayer Perceptron (MLP) regressor.
It wraps the nnet package to train a single-hidden-layer neural network
on sliding-window inputs. Use ts_regsw utilities to project inputs/outputs.
ts_mlp(preprocess = NA, input_size = NA, size = NA, decay = 0.01, maxit = 1000)
preprocess |
Normalization preprocessor (e.g., |
input_size |
Integer. Number of lagged inputs used by the model. |
size |
Integer. Number of hidden neurons. |
decay |
Numeric. L2 weight decay (regularization) parameter. |
maxit |
Integer. Maximum number of training iterations. |
The MLP is a universal function approximator capable of learning
non-linear mappings from lagged inputs to next-step values. For stability,
consider normalizing inputs (e.g., ts_norm_gminmax()). Hidden size and
weight decay control capacity and regularization respectively.
A ts_mlp object (S3) inheriting from ts_regsw.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1986). Learning representations by back-propagating errors. Nature 323, 533–536.
W. N. Venables and B. D. Ripley (2002). Modern Applied Statistics with S.
Fourth Edition. Springer. (for the nnet package)
# Example: MLP on sliding windows with min–max normalization
# Load package and dataset
library(daltoolbox)
data(tsd)
ts <- ts_data(tsd$y, 10)
ts_head(ts, 3)
samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)
# Prepare projection (X, y)
samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)
# Define and fit the MLP
model <- ts_mlp(ts_norm_gminmax(), input_size = 4, size = 4, decay = 0)
model <- fit(model, x=io_train$input, y=io_train$output)
# Predict 5 steps ahead
prediction <- predict(model, x = io_test$input[1,], steps_ahead = 5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)
# Evaluate
ev_test <- evaluate(model, output, prediction)
ev_test
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.