| ts_norm_an | R Documentation |
Transform data to a common scale while adapting to changes in distribution over time (optionally over a trailing window).
ts_norm_an(outliers = outliers_boxplot(), nw = 0)
outliers |
Indicate outliers transformation class. NULL can avoid outliers removal. |
nw |
integer: window size. |
A ts_norm_an object.
Ogasawara, E., Martinez, L. C., De Oliveira, D., Zimbrão, G., Pappa, G. L., Mattoso, M. (2010). Adaptive Normalization: A novel data normalization approach for non-stationary time series. Proceedings of the International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2010.5596746
# time series to normalize
library(daltoolbox)
data(tsd)
# convert to sliding windows
ts <- ts_data(tsd$y, 10)
ts_head(ts, 3)
summary(ts[,10])
# normalization
preproc <- ts_norm_an()
preproc <- fit(preproc, ts)
tst <- transform(preproc, ts)
ts_head(tst, 3)
summary(tst[,10])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.