View source: R/ts_norm_swminmax.R
| ts_norm_swminmax | R Documentation |
Create an object for normalizing each window by its own min and max, preserving local contrast while standardizing scales.
ts_norm_swminmax(outliers = outliers_boxplot())
outliers |
Indicate outliers transformation class. NULL can avoid outliers removal. |
A ts_norm_swminmax object.
Ogasawara, E., Murta, L., Zimbrão, G., Mattoso, M. (2009). Neural networks cartridges for data mining on time series. Proceedings of the International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2009.5178615
# Per-window min–max normalization for sliding windows
# Load package and example data
library(daltoolbox)
data(tsd)
# Build 10-lag windows and preview raw scale
ts <- ts_data(tsd$y, 10)
ts_head(ts, 3)
summary(ts[,10])
# Fit per-window min–max and transform; inspect post-scale values
preproc <- ts_norm_swminmax()
preproc <- fit(preproc, ts)
tst <- transform(preproc, ts)
ts_head(tst, 3)
summary(tst[,10])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.