Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(tv)
library(tibble)
library(dplyr)
library(lubridate)
data <- tribble(
~ pat_id, ~ feature, ~ datetime, ~ value,
1, "lactate", "2021-12-31 23:00:00", 9,
1, "lactate", "2022-01-01 03:41:00", 10,
1, "lactate", "2022-01-01 07:00:00", 11,
1, "blood pressure", "2022-01-01 02:00:00", 120,
1, "blood pressure", "2022-01-01 04:00:00", 115,
1, "blood pressure", "2022-01-01 06:00:00", 118,
1, "6-hour", "2022-01-01 00:00:00", NA_real_,
1, "6-hour", "2022-01-01 06:00:00", NA_real_,
1, "6-hour", "2022-01-01 12:00:00", NA_real_,
1, "6-hour", "2022-01-01 18:00:00", NA_real_,
1, "event", "2022-01-01 08:00:00", NA_real_,
1, "event", "2022-01-01 13:00:00", NA_real_
) %>%
mutate(datetime = as_datetime(datetime))
specs <- tribble(
~ feature, ~ use_for_grid, ~ lookback_start, ~ lookback_end, ~ aggregation,
"lactate", TRUE, 0, Inf, "ts",
"lactate", TRUE, 0, Inf, "lvcf",
"blood pressure", FALSE, 0, 7200, "ts", # two hours
"blood pressure", FALSE, 0, 7200, "lvcf", # two hours
"6-hour", TRUE, 0, Inf, "n",
"event", TRUE, 0, 0, "event"
)
exposure <- tibble(
pat_id = 1,
encounter = 1:2, # optional id
exposure_start = as_datetime(c("2022-01-01 00:00:00", "2022-01-01 08:00:00")),
exposure_stop = as_datetime(c("2022-01-01 08:00:00", "2022-01-01 13:00:00")),
)
time_varying(data, specs, exposure = exposure, time_units = "seconds", n_cores = 1) %>%
arrange(pat_id, row_start)
## ----eval=FALSE---------------------------------------------------------------
# data %>%
# tidyr::pivot_longer(c(start_time, end_time), names_to = "which_time", values_to = "datetime") %>%
# dplyr::mutate(
# value = +(which_time == "start_time")
# )
## ----eval=FALSE---------------------------------------------------------------
# data %>%
# tidyr::pivot_longer(c(start_time, end_time), names_to = "which_time", values_to = "datetime") %>%
# dplyr::arrange(pat_id, datetime) %>%
# dplyr::group_by(pat_id) %>%
# dplyr::mutate(
# value = cumsum(ifelse(which_time == "start_time", 1, -1))
# ) %>%
# dplyr::ungroup()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.