Nothing
#' Displays a useful description of a `ps.cont` object.
#'
#' Computes a short summary table describing the size of the dataset and the
#' quality of the propensity score weights about a stored `ps.cont` object.
#'
#' @param object A `ps.cont` object
#' @param ... Additional arguments.
#'
#' @return
#' *`n` The number of subjects.
#' *`ess` The effective sample size.
#' *`max.wcor` The largest weighted correlation across the covariates.
#' *`mean.wcor` The average weighted correlation across the covariates.
#' *`rms.wcor` The root mean square of the absolute weighted correlations across
#' the covariates.
#' *`iter` The estimated optimal number of [gbm] iterations to optimize the
#' loss function.
#'
#' @examples
#' \dontrun{summary(test.mod)}
#'
#' @seealso [ps.cont]
#'
#' @method summary ps.cont
#' @export
summary.ps.cont <- function(object,...){
summary.names <- c("n", "ess", "max.wcor", "mean.wcor", "rms.wcor", "n.trees")
summary.tab.list <- lapply(object$desc, function(x) {
do.call("c", x[summary.names])
})
summary.tab <- do.call("rbind", summary.tab.list)
colnames(summary.tab)[colnames(summary.tab) == "n.trees"] <- "iter"
return(summary.tab)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.