Nothing
#' Populate the internal `.undid_env` environment
#'
#' This function populates the `.undid_env` environment with pre-defined
#' variables for use within the package. It is called during `.onLoad()`.
#'
#' @param env An environment to populate with package variables.
#' @keywords internal
#' @noRd
.populate_undid_env <- function(env) {
# Define the easily parsed date formats
env$date_formats_general <- c("yyyy/mm/dd", "yyyy-mm-dd", "yyyymmdd",
"yyyy/dd/mm", "yyyy-dd-mm", "yyyyddmm",
"dd/mm/yyyy", "dd-mm-yyyy", "ddmmyyyy",
"mm/dd/yyyy", "mm-dd-yyyy", "mmddyyyy",
"yyyy")
# Define the R date formats
env$date_formats_r <- c("%Y/%m/%d", "%Y-%m-%d", "%Y%m%d", "%Y/%d/%m",
"%Y-%d-%m", "%Y%d%m", "%d/%m/%Y", "%d-%m-%Y",
"%d%m%Y", "%m/%d/%Y", "%m-%d-%Y", "%m%d%Y",
"%Y")
# Other compatiable date formats
env$other_formats <- c("ddmonyyyy", "yyyym00")
# Define a dictionary to convert general date formats into R date formats
env$date_format_dict_to_r <- c("yyyy/mm/dd" = "%Y/%m/%d",
"yyyy-mm-dd" = "%Y-%m-%d",
"yyyymmdd" = "%Y%m%d",
"yyyy/dd/mm" = "%Y/%d/%m",
"yyyy-dd-mm" = "%Y-%d-%m",
"yyyyddmm" = "%Y%d%m",
"dd/mm/yyyy" = "%d/%m/%Y",
"dd-mm-yyyy" = "%d-%m-%Y",
"ddmmyyyy" = "%d%m%Y",
"mm/dd/yyyy" = "%m/%d/%Y",
"mm-dd-yyyy" = "%m-%d-%Y",
"mmddyyyy" = "%m%d%Y",
"yyyy" = "%Y")
# Define a dictionary to convert R date formats to general date formats
env$date_format_dict_from_r <- c("%Y/%m/%d" = "yyyy/mm/dd",
"%Y-%m-%d" = "yyyy-mm-dd",
"%Y%m%d" = "yyyymmdd",
"%Y/%d/%m" = "yyyy/dd/mm",
"%Y-%d-%m" = "yyyy-dd-mm",
"%Y%d%m" = "yyyyddmm",
"%d/%m/%Y" = "dd/mm/yyyy",
"%d-%m-%Y" = "dd-mm-yyyy",
"%d%m%Y" = "ddmmyyyy",
"%m/%d/%Y" = "mm/dd/yyyy",
"%m-%d-%Y" = "mm-dd-yyyy",
"%m%d%Y" = "mmddyyyy",
"%Y" = "yyyy")
# Define a dictionary to convert month abbrevations to numeric strings
env$month_dict <- c("jan" = "01", "feb" = "02", "mar" = "03",
"apr" = "04", "may" = "05", "jun" = "06",
"jul" = "07", "aug" = "08", "sep" = "09",
"oct" = "10", "nov" = "11", "dec" = "12")
# And define a reverse dictionary for integers to months
env$month_dict_reverse <- c(`1` = "jan", `2` = "feb", `3` = "mar",
`4` = "apr", `5` = "may", `6` = "jun",
`7` = "jul", `8` = "aug", `9` = "sep",
`10` = "oct", `11` = "nov", `12` = "dec")
# Define a mapping for frequencies
env$freq_map <- c("yearly" = "year", "year" = "year",
"annual" = "year",
"annually" = "year", "monthly" = "month",
"month" = "month", "weekly" = "week",
"week" = "week",
"daily" = "day", "day" = "day")
# Define expected columns for staggered adoption diff_df
env$staggered_columns <- c("silo_name", "gvar", "treat", "diff_times",
"gt", "diff_estimate", "diff_var",
"diff_estimate_covariates",
"diff_var_covariates", "covariates",
"date_format", "freq", "RI", "start_time",
"end_time")
# Define expected columns for common adoption diff_df
env$common_columns <- c("silo_name", "treat", "common_treatment_time",
"start_time", "end_time", "weights",
"diff_estimate", "diff_var",
"diff_estimate_covariates",
"diff_var_covariates",
"covariates", "date_format", "freq")
# Define interpolation options
env$interpolation_options <- c("linear_function", "nearest_value",
"piecewise_linear")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.