parboot: Parametric bootstrap method for fitted models inheriting...

Description Arguments Details Value Author(s) See Also Examples

Description

Simulate datasets from a fitted model, refit the model, and generate a sampling distribution for a user-specified fit-statistic.

Arguments

object

a fitted model inheriting class "unmarkedFit"

statistic

a function returning a vector of fit-statistics. First argument must be the fitted model. Default is sum of squared residuals.

nsim

number of bootstrap replicates

report

print fit statistic every 'report' iterations during resampling

seed

set seed for reproducible bootstrap

parallel

logical (default = TRUE) indicating whether to compute bootstrap on multiple cores, if present. If TRUE, suppresses reporting of bootstrapped statistics. Defaults to serial calculation when nsim < 100.

ncores

integer (default = one less than number of available cores) number of cores to use when bootstrapping in parallel.

...

Additional arguments to be passed to statistic

Details

This function simulates datasets based upon a fitted model, refits the model, and evaluates a user-specified fit-statistic for each simulation. Comparing this sampling distribution to the observed statistic provides a means of evaluating goodness-of-fit or assessing uncertainty in a quantity of interest.

Value

An object of class parboot with three slots:

call

parboot call

t0

Numeric vector of statistics for original fitted model.

t.star

nsim by length(t0) matrix of statistics for each simulation fit.

Author(s)

Richard Chandler rbchan@uga.edu and Adam Smith

See Also

ranef

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length

ltUMF <- with(linetran, {
	unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
	siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
	tlength = lengths*1000, survey = "line", unitsIn = "m")
    })

# Fit a model
(fm <- distsamp(~area ~habitat, ltUMF))

# Function returning three fit-statistics.
fitstats <- function(fm) {
    observed <- getY(fm@data)
    expected <- fitted(fm)
    resids <- residuals(fm)
    sse <- sum(resids^2)
    chisq <- sum((observed - expected)^2 / expected)
    freeTuke <- sum((sqrt(observed) - sqrt(expected))^2)
    out <- c(SSE=sse, Chisq=chisq, freemanTukey=freeTuke)
    return(out)
    }

(pb <- parboot(fm, fitstats, nsim=25, report=1))
plot(pb, main="")


# Finite-sample inference for a derived parameter.
# Population size in sampled area

Nhat <- function(fm) {
    sum(bup(ranef(fm, K=50)))
    }

set.seed(345)
(pb.N <- parboot(fm, Nhat, nsim=25, report=5))

# Compare to empirical Bayes confidence intervals
colSums(confint(ranef(fm, K=50)))

unmarked documentation built on May 27, 2021, 5:07 p.m.