Nothing
#' Lucas County House Price Data
#'
#' A dataset containing the prices and other attributes of 25,357 houses in
#' Lucas County, Ohio. The selling dates span years 1993 to 1998. Data taken
#' from \code{\link[spData]{house}} (\code{spData} package) and slightly modified to a \code{data.frame}.
#'
#' @format A data frame with 25357 rows and 25 variables:
#' \describe{
#' \item{price}{(\code{integer}) selling price, in US dollars}
#' \item{yrbuilt}{(\code{integer}) year the house was built}
#' \item{stories}{(\code{factor}) levels are \code{"one", "bilevel",
#' "multilvl", "one+half", "two", "two+half", "three"}}
#' \item{TLA}{(\code{integer}) total living area, in square feet.}
#' \item{wall}{(\code{factor}) levels are \code{"stucdrvt", "ccbtile",
#' "metlvnyl", "brick", "stone", "wood", "partbrk"}}
#' \item{beds, baths, halfbaths}{(\code{integer}) number of corresponding
#' rooms / facilities.}
#' \item{frontage, depth}{dimensions of the lot. Unit is feet.}
#' \item{garage}{(\code{factor}) levels are \code{"no garage", "basement",
#' "attached", "detached", "carport"}}
#' \item{garagesqft}{(\code{integer}) garage area, in square feet. If
#' \code{garage == "no garage"}, then \code{garagesqft == 0}.}
#' \item{rooms}{(\code{integer}) number of rooms}
#' \item{lotsize}{(\code{integer}) area of lot, in square feet}
#' \item{sdate}{(\code{Date}) selling date, in format \code{yyyy-mm-dd}}
#' \item{avalue}{(\code{int}) appraised value}
#' \item{s1993, s1994, s1995, s1996, s1997, s1998}{(\code{int}) dummies for
#' selling year.}
#' \item{syear}{(\code{factor}) levels are selling years \code{"1993", "1994",
#' "1995", "1996", "1997", "1998"}}
#' \item{long, lat}{(\code{numeric}) location of houses. Longitude and
#' Latitude are given in \code{CRS(+init=epsg:2834)}, the Ohio North State
#' Plane. Units are meters.}
#' }
#' @source \url{http://www.spatial-econometrics.com/html/jplv6.zip}
"house"
#' Sampled SVC Data
#'
#' A list object that contains sampled data of 500 observations. The data has
#' been sampled using the \code{RandomFields} package (Schlather et al., 2015).
#' It is given in the list object \code{SVCdata} which contains the following.
#'
#' @format A \code{list} with the following entries:
#' \describe{
#' \item{y}{(\code{numeric}) Response}
#' \item{X}{(\code{numeric}) Covariates; first columns contains ones to model
#' an intercept, the second column contains standard-normal sampled data.}
#' \item{beta}{(\code{numeric}) The sampled Gaussian processes, which are
#' usually unobserved. It uses a Matern covariance function and the true
#' parameters are given in the entry `true_pars`.}
#' \item{eps}{(\code{numeric}) Error (or Nugget effect), i.e., drawn from a
#' zero-mean normal distribution with 0.5 standard deviation.}
#' \item{locs}{(\code{numeric}) Locations sampled from a uniform distribution
#' on the interval 0 to 10.}
#' \item{true_pars}{(\code{data.frame}) True parameters of the GP-based SVC
#' model with Gaussian process mean, variance, and range. Additionally, the
#' smoothness (nu) is given.}
#' }
#' @references Schlather, M., Malinowski, A., Menck, P. J., Oesting, M., Strokorb, K. (2015)
#' \emph{Analysis, simulation and prediction of multivariate random fields with package RandomFields},
#' Journal of Statistical Software, \doi{10.18637/jss.v063.i08}
"SVCdata"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.