Nothing
#' Extensions and additions to vcd: Visualizing Categorical Data
#'
#' \if{html}{\figure{man/figures/logo.png}{options: alt='logo' width='100'}}
#'
#' This package provides additional data sets, documentation, and a few
#' functions designed to extend the `vcd` package for Visualizing
#' Categorical Data and the `gnm` package for Generalized Nonlinear
#' Models. In particular, vcdExtra extends mosaic, assoc and sieve plots from
#' vcd to handle glm() and gnm() models and adds a 3D version in
#' \code{\link{mosaic3d}}.
#'
#' This package is also a support package for the book, *Discrete Data
#' Analysis with R* by Michael Friendly and David Meyer, Chapman & Hall/CRC,
#' 2016,
#' <https://www.routledge.com/Discrete-Data-Analysis-with-R-Visualization-and-Modeling-Techniques-for-Categorical-and-Count-Data/Friendly-Meyer/p/book/9781498725835>
#' with a number of additional data sets, and functions. The web site for the
#' book is <http://ddar.datavis.ca>.
#'
#' In addition, I teach a course, *Psy 6136: Categorical Data Analysis*,
#' <https://friendly.github.io/psy6136/> using this package.
#'
#' The main purpose of this package is to serve as a sandbox for introducing
#' extensions of mosaic plots and related graphical methods that apply to
#' loglinear models fitted using `glm()` and related, generalized
#' nonlinear models fitted with `gnm()` in the
#' \code{\link[gnm]{gnm-package}} package. A related purpose is to fill in some
#' holes in the analysis of categorical data in R, not provided in base R, the
#' \pkg{vcd}, or other commonly used packages.
#'
#' The method \code{\link{mosaic.glm}} extends the
#' \code{\link[vcd]{mosaic.loglm}} method in the \pkg{vcd} package to this
#' wider class of models. This method also works for the generalized nonlinear
#' models fit with the \code{\link[gnm]{gnm-package}} package, including models
#' for square tables and models with multiplicative associations.
#'
#' \code{\link{mosaic3d}} introduces a 3D generalization of mosaic displays
#' using the \pkg{rgl} package.
#'
#' In addition, there are several new data sets, a tutorial vignette,
#' \describe{ \item{vcd-tutorial}{Working with categorical data with R and the
#' vcd package, `vignette("vcd-tutorial", package = "vcdExtra") `} } and a
#' few functions for manipulating categorical data sets and working with models
#' for categorical data.
#'
#' A new class, \code{\link{glmlist}}, is introduced for working with
#' collections of `glm` objects, e.g., \code{\link{Kway}} for fitting all
#' K-way models from a basic marginal model, and \code{\link{LRstats}} for
#' brief statistical summaries of goodness-of-fit for a collection of models.
#'
#' For square tables with ordered factors, \code{\link{Crossings}} supplements
#' the specification of terms in model formulas using \code{\link[gnm]{Symm}},
#' \code{\link[gnm]{Diag}}, \code{\link[gnm]{Topo}}, etc. in the
#' \code{\link[gnm]{gnm-package}}.
#'
#' Some of these extensions may be migrated into \pkg{vcd} or \pkg{gnm}.
#'
#' A collection of demos is included to illustrate fitting and visualizing a
#' wide variety of models: \describe{ \item{mental-glm}{Mental health data:
#' mosaics for glm() and gnm() models} \item{occStatus}{Occupational status
#' data: Compare mosaic using expected= to mosaic.glm}
#' \item{ucb-glm}{UCBAdmissions data: Conditional independence via loglm() and
#' glm()} \item{vision-quasi}{VisualAcuity data: Quasi- and Symmetry models}
#' \item{yaish-unidiff}{Yaish data: Unidiff model for 3-way table}
#' \item{Wong2-3}{Political views and support for women to work (U, R, C, R+C
#' and RC(1) models)} \item{Wong3-1}{Political views, support for women to work
#' and national welfare spending (3-way, marginal, and conditional independence
#' models)} \item{housing}{Visualize glm(), multinom() and polr() models from
#' `example(housing, package="MASS")`} } Use `
#' demo(package="vcdExtra")` for a complete current list.
#'
#' The \pkg{vcdExtra} package now contains a large number of data sets
#' illustrating various forms of categorical data analysis and related
#' visualizations, from simple to advanced. Use `data(package="vcdExtra")`
#' for a complete list, or `datasets(package="vcdExtra")` for an annotated
#' one showing the `class` and `dim` for each data set.
#'
#' @name vcdExtra-package
#' @aliases vcdExtra-package vcdExtra _PACKAGE
#' @author Michael Friendly
#'
#' Maintainer: Michael Friendly
#' (\href{https://orcid.org/0000-0002-3237-0941}{ORCID})
#'
#' @seealso \code{\link[gnm]{gnm-package}}, for an extended range of models for
#' contingency tables
#'
#' \code{\link[vcd]{mosaic}} for details on mosaic displays within the
#' strucplot framework.
#' @references
#' Friendly, M. *Visualizing Categorical Data*, Cary NC: SAS
#' Institute, 2000. Web materials: <http://www.datavis.ca/books/vcd/>.
#'
#' Friendly, M. and Meyer, D. (2016). *Discrete Data Analysis with R:
#' Visualization and Modeling Techniques for Categorical and Count Data*. Boca
#' Raton, FL: Chapman & Hall/CRC. <http://ddar.datavis.ca>.
#'
#' Meyer, D.; Zeileis, A. & Hornik, K. The Strucplot Framework: Visualizing
#' Multi-way Contingency Tables with vcd *Journal of Statistical
#' Software*, 2006, **17**, 1-48. Available in R via
#' `vignette("strucplot", package = "vcd")`
#'
#' Turner, H. and Firth, D. *Generalized nonlinear models in R: An
#' overview of the gnm package*, 2007, <http://eprints.ncrm.ac.uk/472/>.
#' Available in R via `vignette("gnmOverview", package = "gnm")`.
#'
#' @importFrom grDevices hsv rgb
#' @importFrom stats as.formula deviance family fitted formula glm logLik loglin model.frame na.pass nobs pchisq poisson qnorm quantile reformulate residuals rstandard runif terms update update.formula xtabs
#' @importFrom utils data menu type.convert
#' @importFrom ca cacoord multilines
#' @importFrom graphics abline plot points text
#' @importFrom MASS loglm
#'
#' @keywords package
#'
#' @examples
#'
#' example(mosaic.glm)
#'
#' demo("mental-glm")
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.