View source: R/hier.vegclust.R
| hier.vegclust | R Documentation |
Performs several runs of function 'vegclust' (or 'vegclustdist') on a community data matrix (or distance matrix) using different number of clusters
hier.vegclust(
x,
hclust,
cmin = 2,
cmax = 20,
min.size = NULL,
verbose = TRUE,
...
)
random.vegclust(
x,
cmin = 2,
cmax = 20,
nstart = 10,
min.size = NULL,
verbose = TRUE,
...
)
hier.vegclustdist(
x,
hclust,
cmin = 2,
cmax = 20,
min.size = NULL,
verbose = TRUE,
...
)
random.vegclustdist(
x,
cmin = 2,
cmax = 20,
nstart = 10,
min.size = NULL,
verbose = TRUE,
...
)
x |
For |
hclust |
A hierarchical clustering represented in an object of type |
cmin |
Number of minimum mobile clusters. |
cmax |
Number of maximum mobile clusters. |
min.size |
If |
verbose |
Flag used to print which number of clusters is currently running. |
... |
Additional parameters for function |
nstart |
A number indicating how many random trials should be performed for each number of groups |
Function hier.vegclust takes starting cluster configurations from cuts of a dendrogram given by object hclust. Function random.vegclust chooses random objects as cluster centroids and for each number of clusters performs nstart trials. Functions hier.vegclustdist and random.vegclustdist are analogous to hier.vegclust and random.vegclust but accept distance matrices as input.
Returns an object of type 'mvegclust' (multiple vegclust), which contains a list vector with objects of type vegclust.
Miquel De Cáceres, CREAF
vegclust, vegclustdist, vegclass, defuzzify, hclust
## Loads data
data(wetland)
## This equals the chord transformation
wetland.chord <- as.data.frame(sweep(as.matrix(wetland), 1,
sqrt(rowSums(as.matrix(wetland)^2)), "/"))
## Create noise clustering from hierarchical clustering at different number of clusters
wetland.hc <- hclust(dist(wetland.chord),method="ward")
wetland.nc1 <- hier.vegclust(wetland.chord, wetland.hc, cmin=2, cmax=5,
m = 1.2, dnoise=0.75, method="NC")
## Create noise clustering from random seeds at different levels
wetland.nc2 <- random.vegclust(wetland.chord, cmin=2, cmax=5, nstart=10,
m = 1.2, dnoise=0.75, method="NC")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.