Description Usage Arguments Details Value Author(s) References See Also Examples
Given two groups with multiple samples (e.g. sites, plots) the sim.groups function calculates all possible pairwise combinations of within- and between-group comparisons.
1 |
abundances1 |
Community data as a matrix where columns are individual species and rows are sites or a vector of different species within a site. Matrix and vector elements are abundance data (e.g. counts, percent cover estimates). |
abundances2 |
Community data, a vector of different species within a site. Vector elements are abundance data (e.g. counts, percent cover estimates). If abundances1 is given a matrix, then abundances2 defaults to a logical FALSE statement. |
q |
Order of the diversity measure. Defaults to the Shannon case where q = 1. |
labels |
Logical statement. If labels=TRUE, then site names are given as the first column of the abundance matrix. The default is labels=FALSE where no site names are given in the abundance matrix. |
boot |
Logical indicating whether to use bootstrapping to estimate uncertainty. If boot=TRUE, only standard errors will be output in table; to get both values and standard error of similarities, must call sim.groups twice, setting boot to both TRUE and FALSE |
boot.arg |
(optional) List of arguments to pass bootstrapping function: list(s.sizes=number you specify, num.iter=number you specify) |
Depending on the specification of the order (q), other different similarity indices may be calculated (e.g. Sorenson index when q=0, Horn index when q=1, Morisita-Horn index when q=2) (Jost 2007).
within.1 |
Within-group similarities (or standard errors) for first group. |
within.2 |
Within-group similarities (or standard errors) for second group. |
between |
Between group similarities (or standard errors). |
Noah Charney, Sydne Record
Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88(10): 2427-2439.
1 2 3 4 5 | data(simesants)
sim.groups(simesants[1:3,],simesants[4:5,],labels=TRUE,boot=TRUE)
sim.groups(simesants[1:3,-1],simesants[4:5,-1])
sim.groups(simesants[1:3,-1],simesants[4:5,-1],labels=TRUE,boot=TRUE)#gives standard errors only
sim.groups(simesants[1:3,-1],simesants[4:5,-1],labels=TRUE,boot=TRUE,boot.arg=list(num.iter=200))#gives standard errors only
|
$within.1
[1] 0.02227010 0.05168003 0.04714824
$within.2
[1] 0.02849476
$between
[1] 0.02681434 0.02679088 0.05046991 0.03072453 0.02804491 0.04779836
$within.1
[1] 0.8847291 0.4505731 0.4672154
$within.2
[1] 0.7687828
$between
[1] 0.8445172 0.8957444 0.4361535 0.7809052 0.8439991 0.5196775
$within.1
[1] 0.02257804 0.05010731 0.05118709
$within.2
[1] 0.03357419
$between
[1] 0.03006001 0.02318102 0.04722632 0.02762819 0.02268712 0.04129363
$within.1
[1] 0.02053456 0.04973854 0.04782496
$within.2
[1] 0.03063125
$between
[1] 0.02895894 0.02837632 0.04945613 0.02867306 0.02084208 0.04184798
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.