README.md

vinereg

R build
status Coverage
status CRAN
status

An R package for D-vine copula based mean and quantile regression.

How to install

Functionality

See the package website.

Example

set.seed(5)
library(vinereg)
data(mtcars)

# declare factors and discrete variables
for (var in c("cyl", "vs", "gear", "carb"))
    mtcars[[var]] <- as.ordered(mtcars[[var]])
mtcars[["am"]] <- as.factor(mtcars[["am"]])

# fit model
(fit <- vinereg(mpg ~ ., family = "nonpar", data = mtcars))
#> D-vine regression model: mpg | disp, qsec, hp 
#> nobs = 32, edf = 21.86, cll = -55.94, caic = 155.59, cbic = 187.63

summary(fit)
#>    var       edf         cll       caic        cbic      p_value
#> 1  mpg  0.000000 -100.189867 200.379733 200.3797334           NA
#> 2 disp 11.177711   29.363521 -36.371618 -19.9880453 1.873313e-08
#> 3 qsec  2.328636    4.167727  -3.678182  -0.2650159 2.180106e-02
#> 4   hp  8.353178   10.723533  -4.740711   7.5028411 7.480400e-03

# show marginal effects for all selected variables
plot_effects(fit)
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'

# predict mean and median
head(predict(fit, mtcars, alpha = c(NA, 0.5)), 4)
#>       mean      0.5
#> 1 22.36600 22.27170
#> 2 22.18247 22.01755
#> 3 25.33357 24.90170
#> 4 20.24950 20.03959

Vignettes

For more examples, have a look at the vignettes with

vignette("abalone-example", package = "vinereg")
vignette("bike-rental", package = "vinereg")

References

Kraus and Czado (2017). D-vine copula based quantile regression. Computational Statistics & Data Analysis, 110, 1-18. link, preprint

Schallhorn, N., Kraus, D., Nagler, T., Czado, C. (2017). D-vine quantile regression with discrete variables. Working paper, preprint.



Try the vinereg package in your browser

Any scripts or data that you put into this service are public.

vinereg documentation built on March 23, 2022, 5:06 p.m.